大长径比熔铸装药热芯棒凝固工艺优化仿真

岳晓媛 张会锁 韩雪莲 刘红利 王彦杰 刘恒著 刘鹏飞 曹红松

岳晓媛, 张会锁, 韩雪莲, 刘红利, 王彦杰, 刘恒著, 刘鹏飞, 曹红松. 大长径比熔铸装药热芯棒凝固工艺优化仿真[J]. 高压物理学报, 2021, 35(1): 015302. doi: 10.11858/gywlxb.20200592
引用本文: 岳晓媛, 张会锁, 韩雪莲, 刘红利, 王彦杰, 刘恒著, 刘鹏飞, 曹红松. 大长径比熔铸装药热芯棒凝固工艺优化仿真[J]. 高压物理学报, 2021, 35(1): 015302. doi: 10.11858/gywlxb.20200592
YUE Xiaoyuan, ZHANG Huisuo, HAN Xuelian, LIU Hongli, WANG Yanjie, LIU Hengzhu, LIU Pengfei, CAO Hongsong. Process of Improved Hot Mandrel for Large Length-Diameter Ratio Warhead Melting Cast[J]. Chinese Journal of High Pressure Physics, 2021, 35(1): 015302. doi: 10.11858/gywlxb.20200592
Citation: YUE Xiaoyuan, ZHANG Huisuo, HAN Xuelian, LIU Hongli, WANG Yanjie, LIU Hengzhu, LIU Pengfei, CAO Hongsong. Process of Improved Hot Mandrel for Large Length-Diameter Ratio Warhead Melting Cast[J]. Chinese Journal of High Pressure Physics, 2021, 35(1): 015302. doi: 10.11858/gywlxb.20200592

大长径比熔铸装药热芯棒凝固工艺优化仿真

doi: 10.11858/gywlxb.20200592
详细信息
    作者简介:

    岳晓媛(1996-),女,硕士研究生,主要从事装药仿真优化研究. E-mail:xyyue3863@126.com

    通讯作者:

    张会锁(1976-),男,博士,副教授,主要从事弹箭虚拟设计及智能化技术研究. E-mail:13653513620@139.com

  • 中图分类号: O482.2; TJ410.6

Process of Improved Hot Mandrel for Large Length-Diameter Ratio Warhead Melting Cast

  • 摘要: 为提高大长径比战斗部的熔铸装药质量,采用有限元仿真方法建立了三维装药模型,对熔铸装药过程进行数值模拟。通过分析传统铸装和热芯棒工艺铸装的仿真结果,结合缩孔形成原因和传统热芯棒工艺对装药质量的改善机理,设计出一种多层次优化温度控制的热芯棒,并对改良热芯棒工艺铸装过程进行数值模拟,预测热芯棒改良工艺对装药质量的影响。结果表明:传统热芯棒铸装工艺无法改变药柱径向凝固顺序,在药室宽大处仍然会出现缩孔缩松的疵病,而改良热芯棒工艺通过改善药柱凝固顺序,可以预防缩孔缩松出现,达到了预期要求。

     

  • 图  熔铸装药模型

    Figure  1.  Melt-casting charge model

    图  装药缺陷对比

    Figure  2.  Comparison of charge defects

    图  熔铸装药后处理云图

    Figure  3.  Post-processing cloud image of melt-casting charge

    图  4个测温点位置

    Figure  4.  Location of four temperature measurement points

    图  测温点温度-时间曲线

    Figure  5.  Temperature-time curves of temperature measurement points

    图  传统热芯棒工艺铸装模型

    Figure  6.  Casting model of traditional hot mandrel process

    图  热芯棒工艺铸装后处理云图

    Figure  7.  Hot mandrel process casting andpost-processing cloud image

    图  多层次热芯棒系统组成

    Figure  8.  Composition of layered hot mandrel system

    图  改良热芯棒工艺铸装模型

    Figure  9.  Casting model of improved hot mandrel process

    图  10  改良热芯棒工艺铸装缩松率云图

    Figure  10.  Cloud image of casting shrinkage rate of the improved hot mandrel process

    图  11  改良热芯棒工艺铸装凝固时间云图

    Figure  11.  Time cloud image of casting solidification of the improved hot mandrel process

    图  12  改良后测温点温度-时间曲线

    Figure  12.  Temperature-time curves of temperature measurement points for improved hot mandrel

    表  1  材料的热物性参数[18-20]

    Table  1.   Thermo-physical parameters of the materials[18-20]

    Material$\theta\rm{_m} $/℃L/(kJ·kg–1)C/(J·kg–1·K–1)$\,\rho $/(g·cm–3)$\,\mu$/(Pa·s)$\alpha $/K–1
    Explosive B78–8033.5 1 063 (25 ℃)
    1 276 (50 ℃)
    1 573 (75 ℃)
    1 481 (85 ℃)
    1 427 (90 ℃)
    1 035 (100 ℃)
    1.6800.31 (83 ℃)
    0.27 (90 ℃)
    0.27 (95 ℃)
    7.69 × 10–5 (23 ℃)
    2.00 × 10–5 (50 ℃)
    5.00 × 10–6 (75 ℃)
    1.00 × 10–6 (80 ℃)
    H13 steel0.737.8004.45 × 10–8 (22–500 ℃)
    Al0.907.625
    下载: 导出CSV

    表  2  热芯棒位移-时间关系

    Table  2.   Displacement-time relationship of the hot mandrel

    t/sx/mm
    00
    5600
    500600
    1 0000
    下载: 导出CSV
  • [1] 郑保辉, 罗观, 舒远杰, 等. 熔铸炸药研究现状与发展趋势 [J]. 化工进展, 2013, 32(6): 1341–1346.

    ZHENG B H, LUO G, SHU Y J, et al. Research status and prospect of melt-cast explosive [J]. Chemical Industry and Engineering Progress, 2013, 32(6): 1341–1346.
    [2] 智小琦. 弹箭炸药装药技术[M]. 北京: 兵器工业出版社, 2011: 79–80.

    ZHI X Q. Ammunition charging technology for ammunition [M]. Beijing: Ordnance Industry Press, 2011: 79–80.
    [3] 张恒志. 火炸药应用技术[M]. 北京: 北京理工大学出版社, 2010: 65–82.

    ZHANG H Z. Application technology of explosives [M]. Beijing: Beijing Institute of Technology Press, 2010: 65–82.
    [4] ZHU D L, ZHOU L, ZHANG X R. Rheological behavior of DNAN/HMX melt-cast explosives [J]. Propellants, Explosives, Pyrotechnics, 2019, 44(12): 1583–1589. doi: 10.1002/prep.201900117
    [5] SANHYE W, DUBOIS C, LAROCHE I, et al. Numerical modeling of the cooling cycle and associated thermal stresses in a melt explosive charge [J]. AIChE Journal, 2016, 62(10): 3797–3811. doi: 10.1002/aic.15288
    [6] 刘威, 曹红松. 基于灰色理论的DNAN基熔铸炸药成型工艺参数优化 [J]. 机械工程师, 2016, 3(3): 58–60. doi: 10.3969/j.issn.1002-2333.2016.03.024

    LIU W, CAO H S. Parameters optimization in DANA-based melt-cast explosive based on grey theory [J]. Mechanical Engineer, 2016, 3(3): 58–60. doi: 10.3969/j.issn.1002-2333.2016.03.024
    [7] 王政, 芮久后, 赵雪, 等. DNAN基高致密熔铸炸药装药安全性研究 [J]. 广东化工, 2015, 42(24): 6–7, 24. doi: 10.3969/j.issn.1007-1865.2015.24.003

    WANG Z, RUI J H, ZHAO X, et al. The safety analysis of high density melt-casting explosive based on DNAN [J]. Guangdong Chemical Industry, 2015, 42(24): 6–7, 24. doi: 10.3969/j.issn.1007-1865.2015.24.003
    [8] 王宇, 芮久后, 冯顺山. 装药缺陷对熔铸炸药爆速影响的实验研究 [J]. 北京理工大学学报, 2011, 31(7): 757–761.

    WANG Y, RUI J H, FENG S S. Experimental research of the charge defects’ influence on detonation velocity of melting-cast explosive [J]. Transactions of Beijing Institute of Technology, 2011, 31(7): 757–761.
    [9] 冀腾宇. DNAN基熔铸炸药装药发射安全性研究[D]. 北京: 北京理工大学, 2016.

    JI T Y. Research on DNAN based melt-cast explosive charge and launching safety [D]. Beijing: Beijing Institute of Technology, 2016.
    [10] WANG D L, XIE Z Y, SUN W X, et al. Solidification simulation of melt-cast explosive under pressurization [J]. Material Science Forum, 2011, 704/705(1): 71–75.
    [11] 李敬明, 田勇, 张伟斌, 等. 炸药熔铸过程缩孔和缩松的形成与预测 [J]. 火炸药学报, 2011, 34(2): 17–20. doi: 10.3969/j.issn.1007-7812.2011.02.004

    LI J M, TIAN Y, ZHANG W B, et al. Formation and prediction of shrinkage hole and shrinkage porosity in explosive during casting process [J]. Chinese Journal of Explosives & Propellants, 2011, 34(2): 17–20. doi: 10.3969/j.issn.1007-7812.2011.02.004
    [12] 黄勇, 郑保辉, 谢志毅, 等. 熔铸炸药加压凝固过程研究 [J]. 含能材料, 2013, 21(1): 25–29. doi: 10.3969/j.issn.1006-9941.2013.01.006

    HUANG Y, ZHENG B H, XIE Z Y, et al. Pressured solidification process of melt-cast explosive [J]. Chinese Journal of Energetic Materials, 2013, 21(1): 25–29. doi: 10.3969/j.issn.1006-9941.2013.01.006
    [13] 田勇. 炸药熔铸成型过程监测评价及数值模拟研究[D]. 北京: 中国科学院工程热物理研究所, 2010.

    TIAN Y. Process monitoring/evaluation and numerical simulation during casting explosive solidification [D]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2010.
    [14] 蒙君煚, 张向荣, 周霖, 等. DNAN基熔铸炸药成型过程数值仿真 [J]. 兵工学报, 2013, 34(7): 810–814.

    MENG J J, ZHANG X R, ZHOU L, et al. Simulation of solidification process for DNAN-based melt-cast explosives [J]. Acta Armamentarii, 2013, 34(7): 810–814.
    [15] SUN D W, GARIMELLA S V, SINGH S, et al. Numerical and experimental investigation of the melt casting of explosives [J]. Propellants, Explosives, Pyrotechnics, 2018, 30(5): 369–380.
    [16] 张川, 余瑾. 基于ProCAST的124D型主泵泵壳铸造工艺设计及优化 [J]. 大型铸锻件, 2019, 10(1): 14–17.

    ZHANG C, YU J. Casting process design and optimization of 124D main pump casing based on ProCAST [J]. Heavy Casting Forging, 2019, 10(1): 14–17.
    [17] 易茂光, 张明明, 冉靖, 等. 弹药熔铸装药水浴护理凝固控制技术 [J]. 兵工自动化, 2019, 38(8): 14–17.

    YI M G, ZHANG M M, RAN J. Solidification control technology of melt-casting charging under water bath curing [J]. Ordnance Industry Automation, 2019, 38(8): 14–17.
    [18] 钟一鹏, 胡雅达, 江宏志. 国外炸药性能手册[M]. 北京: 兵器工业出版社, 1990: 117–118.

    ZHONG Y P, HU Y D, JIANG H Z. Foreign explosive performance manual [M]. Beijing: Ordnance Industry Press, 1990: 117–118.
    [19] 苗爽, 王涛, 王玉玲. 孔洞缺陷对B炸药性能影响的理论计算 [J]. 原子与分子物理学报, 2019, 36(4): 675–681. doi: 10.3969/j.issn.1000-0364.2019.04.023

    MIAO S, WANG T, WANG Y L. Theoretical calculation on effects of void defects on properties of composition B [J]. Journal of Atomic and Molecular Physics, 2019, 36(4): 675–681. doi: 10.3969/j.issn.1000-0364.2019.04.023
    [20] 谭彦显, 杨伟峰, 徐立华, 等. 模具材料及表面强化处理[M]. 2版. 北京: 北京理工大学出版社, 2014: 197–198.

    TAN Y X, YANG W F, XU L H, et al. Mold material and surface strengthening treatment [M]. 2nd ed. Beijing: Beijing Institute of Technology Press, 2014: 197–198.
    [21] 刘雨荻. 凝固工艺对熔铸炸药微观结晶组织的影响研究[D]. 太原: 中北大学, 2019.

    LIU Y D. Research on the effect of solidification process on the crystalline structure of melt-cast explosive [D]. Taiyuan: North University of China, 2019.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  6441
  • HTML全文浏览量:  2861
  • PDF下载量:  45
出版历程
  • 收稿日期:  2020-07-13
  • 修回日期:  2020-07-25

目录

    /

    返回文章
    返回