Raman Evidences of Chemical Reaction of Re-H2O System at High Pressure and High Temperature
-
摘要: 铼片是金刚石对顶砧超高压装置实验中常用的封垫材料,深部水是地球深部物质循环与能量交换的纽带,Re-H2O体系高温高压化学反应研究具有重要的科学和技术意义。比较高温高压与常温常压条件的显微观察和拉曼测试结果表明:Re-H2O体系在高压、高温环境(如40.5 GPa,(1 800 ± 200) K)发生氧化还原反应(
${2{{\rm{H}}_2}{\rm{O}} + {\rm{Re}}\;\;\;\begin{matrix}{40.5\;{\rm{GPa}}} \\\hline \hline{1\;800\;{\rm{K}}}\\\end{matrix}\;\;\;{\rm{Re}}{{\rm{O}}_2} + 4{\rm{H}}}$ )生成4价态的铼氧化物(β-ReO2)和零价态的氢(H)。氧化产物β-ReO2的14个特征拉曼峰随着压力卸载向低波数方向连续不等性移动,未观察到还原产物氢原子在高压下与水分子、金属铼及其反应产物β-ReO2和H发生明显相互作用,直到压力卸载至常压时,氢原子发生聚合生成氢分子。Re-H2O体系高温高压化学反应揭示了地球深部的温度、压力以及还原性物质环境中水(羟基)裂解为氢原子,该发现为地幔和核幔边界的深部水裂解反应提供了新的实验证据,为探讨地球深部水的可能地球化学行为提供了重要依据。Abstract: Rhenium tablet is a frequently used gasket material at the ultra-high pressures in Diamond anvil cell (DAC) experiment. Water in deep Earth is the link between material exchange and energy circulation in the Earth’s interior. It is greatly scientific and technical significance on the study of chemical reaction of Re-H2O system at high pressures and temperatures. Microscopic observations and Raman measurements show that the Re-H2O system takes place the redox reaction${2{{\rm{H}}_2}{\rm{O}} + {\rm{Re}}\;\;\;\begin{matrix}{40.5\;{\rm{GPa}}} \\\hline \hline{1\;800\;{\rm{K}}}\\\end{matrix}\;\;\;{\rm{Re}}{{\rm{O}}_2} + 4{\rm{H}}}$ under the conditions of high pressures and high temperatures, and produce rhenium oxide (β-ReO2) with Re4+ and atomic hydrogen (H). Observed fourteen characteristic Raman peaks of oxidation product ReO2 have a continuous unequal shift to lower Raman frequencies with the release of pressure. Reduction product H does not further take place interreaction with the water molecules, rhenium metals and their reaction products β-ReO2 and atomic H under high pressures. But the hydrogen molecules are formed when the pressure is released to near atmospheric pressure. The chemical reaction of Re-H2O system under the conditions of high-pressure and temperature reveals that water (hydroxyl) can decompose to produce atomic hydrogen in the Earth’s interior with the high pressure, high temperature and reductive material. This discovery not only provides a new experimental evidence for the conversion of water to hydrogen in deep Earth, but also gives important basis for exploring the possible geochemical behaviors of water in the Earth’s interior.-
Key words:
- Re-H2O system /
- water in deep Earth /
- water splitting /
- DAC /
- Raman spectra
-
图 4 加压(黑色曲线)和卸压(红色曲线)过程2 000~4 500 cm−1范围黑色样品边缘水的代表性拉曼光谱(星形标注峰为金刚石特征拉曼峰,插图为卸压(红色外框)和加压过程腔体的显微图像)
Figure 4. Representative Raman spectra of water locating on the edge of black sample in the range of 2 000−4 500 cm−1 under loading (black curves) and unloading (red curves) (Characteristic Raman peaks of diamond are marked with the stars, and the microscopic images of loading and unloading (with red borders) were inserted.)
表 1 β-ReO2的拉曼频率及其与压力的关系
Table 1. Raman frequencies and their pressure dependence dω/dP of the β-ReO2
No. ω/cm−1 (dω/dp)/(cm−1·GPa−1) 0.1 MPa 10.5 GPa 20.2 GPa 30.7 GPa 40.8 GPa 1 166 177 182 189 194 0.7 2 170 181 190 199 201 0.8 3 199 214 223 231 237 0.9 4 240 249 255 261 265 0.6 5 287 315 342 361 372 2.2 6 359 372 385 390 401 1.1 7 373 388 404 416 424 1.3 8 437 454 470 482 488 1.3 9 513 548 578 596 607 2.4 10 561 586 2.6 11 577 602 625 640 650 1.8 12 688 747 807 841 869 4.4 13 722 784 850 891 917 4.9 14 751 809 864 904 929 4.4 -
[1] MARTIN R F, DONNAY G. Hydroxyl in the mantle [J]. American Mineralogist, 1972, 57(3/4): 554570. [2] HIRSCHMANN M M. Water, melting, and the deep Earth H2O cycle [J]. Annual Review of Earth and Planetary Sciences, 2006, 34: 629–653. doi: 10.1146/annurev.earth.34.031405.125211 [3] GREEN D H, HIBBERSON W O, KOVÁCS I, et al. Water and its influence on the lithosphere–asthenosphere boundary [J]. Nature, 2010, 467(7314): 448–451. doi: 10.1038/nature09369 [4] HIRSCHMANN M M, AUBAUD C, WITHERS A C. Storage capacity of H2O in nominally anhydrous minerals in the upper mantle [J]. Earth and Planetary Science Letters, 2005, 236(1/2): 167–181. doi: 10.1016/j.jpgl.2005.04.022 [5] OHTANI E. Water in the mantle [J]. Elements, 2005, 1(1): 25–30. doi: 10.2113/gselements.1.1.25 [6] OHTANI E. The role of water in Earth's mantle [J]. National Science Review, 2020, 7(1): 224–232. doi: 10.1093/nsr/nwz071 [7] 夏群科, 杨晓志, 郝艳涛, 等. 深部地球中水的分布和循环 [J]. 地学前缘, 2007, 14(2): 10–23. doi: 10.3321/j.issn:1005-2321.2007.02.002XIA Q K, YANG X Z, HAO Y T, et al. Water: distribution and circulation in the deep Earth [J]. Earth Science Frontiers, 2007, 14(2): 10–23. doi: 10.3321/j.issn:1005-2321.2007.02.002 [8] YANG X, KEPPLER H, LI Y. Molecular hydrogen in mantle minerals [J]. Geochemical Perspectives Letters, 2016, 2(2): 160–168. doi: 10.7185/geochemlet.1616 [9] HU Q Y, KIM D Y, LIU J, et al. Dehydrogenation of goethite in Earth’s deep lower mantle [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(7): 1498–1501. doi: 10.1073/pnas.1620644114 [10] HU Q Y, KIM D Y, YANG W G, et al. FeO2 and FeOOH under deep lower-mantle conditions and Earth’s oxygen–hydrogen cycles [J]. Nature, 2016, 534(7606): 241–244. doi: 10.1038/nature18018 [11] ZHANG L, YUAN H S, MENG Y, et al. Discovery of a hexagonal ultradense hydrous phase in (Fe, Al)OOH [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(12): 2908–2911. doi: 10.1073/pnas.1720510115 [12] OHTANI E, HIRAO N, KONDO T, et al. Iron-water reaction at high pressure and temperature, and hydrogen transport into the core [J]. Physics and Chemistry of Minerals, 2005, 32(1): 77–82. doi: 10.1007/s00269-004-0443-6 [13] VOHRA Y K, DUCLOS S J, RUOFF A L. High-pressure x-ray diffraction studies on rhenium up to 216 GPa (2.16 Mbar) [J]. Physical Review B, 1987, 36(18): 9790–9792. doi: 10.1103/PhysRevB.36.9790 [14] BONDARENKO Y A, KABLOV E N, SUROVA V A, et al. Effect of high-gradient directed crystallization on the structure and properties of rhenium-bearing single-crystal alloy [J]. Metal Science and Heat Treatment, 2006, 48(7/8): 360–363. doi: 10.1007/s11041-006-0099-6 [15] NAUMOV A V. Rhythms of rhenium [J]. Russian Journal of Non-Ferrous Metals, 2007, 48(6): 418–423. doi: 10.3103/S1067821207060089 [16] SANTAMARÍA-PÉREZ D, MCGUIRE C, MAKHLUF A, et al. Exploring the chemical reactivity between carbon dioxide and three transition metals (Au, Pt, and Re) at high-pressure, high-temperature conditions [J]. Inorganic Chemistry, 2016, 55(20): 10793–10799. doi: 10.1021/acs.inorgchem.6b01858 [17] CHELLAPPA R S, SOMAYAZULU M, HEMLEY R J. Rhenium reactivity in H2O-O2 supercritical mixtures at high pressures [J]. High Pressure Research, 2009, 29(4): 792–799. doi: 10.1080/08957950903286450 [18] MAO H K, BELL P M, SHANER J W, et al. Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R1 fluorescence pressure gauge from 0.06 to 1 Mbar [J]. Journal of Applied Physics, 1978, 49(6): 3276–3283. doi: 10.1063/1.325277 [19] GONCHAROV A F, GREGORYANZ E, STRUZHKIN V V, et al. Raman scattering of metals to very high pressures [EB/OL]. arXiv: cond-mat/0112404. (2001-12-20)[2020-03-01]. http://arxiv.org/abs/cond-mat/0112404. [20] PRUZAN P, CHERVIN J C, GAUTHIER M. Raman spectroscopy investigation of ice Ⅶ and deuterated ice Ⅶ to 40 GPa: disorder in ice Ⅶ [J]. EPL (Europhysics Letters), 1990, 13(1): 81–87. doi: 10.1209/0295-5075/13/1/014 [21] WALRAFEN G E, ABEBE M, MAUER F A, et al. Raman and x-ray investigations of ice Ⅶ to 36.0 GPa [J]. The Journal of Chemical Physics, 1982, 77(4): 2166–2174. doi: 10.1063/1.444023 [22] CAREY D M, KORENOWSKI G M. Measurement of the Raman spectrum of liquid water [J]. The Journal of Chemical Physics, 1998, 108(7): 2669–2675. doi: 10.1063/1.475659 [23] DUNAEVA A N, ANTSYSHKIN D V, KUSKOV O L. Phase diagram of H2O: thermodynamic functions of the phase transitions of high-pressure ices [J]. Solar System Research, 2010, 44(3): 202–222. doi: 10.1134/S0038094610030044 [24] HSIEH W P, CHIEN Y H. High pressure Raman spectroscopy of H2O-CH3OH mixtures [J]. Scientific Reports, 2015, 5(1): 8532. doi: 10.1038/srep08532 [25] OTTO J W, VASSILIOU J K, PORTER R F, et al. Raman study of AgReO4 in the scheelite structure under pressure [J]. Physical Review B, 1991, 44(17): 9223–9227. doi: 10.1103/PhysRevB.44.9223 [26] KLUG D D, SIM P G, BROWN R J C. Raman spectrum of NH4ReO4 at high pressure [J]. Journal of Raman Spectroscopy, 1982, 13(1): 53–55. doi: 10.1002/jrs.1250130110 [27] MACHIDA S I, HIRAI H, KAWAMURA T, et al. Raman spectra for hydrogen hydrate under high pressure: intermolecular interactions in filled ice Ic structure [J]. Journal of Physics and Chemistry of Solids, 2010, 71(9): 1324–1328. doi: 10.1016/j.jpcs.2010.05.015 [28] MACHIDA S, HIRAI H, KAWAMURA T, et al. Structural changes and intermolecular interactions of filled ice ic structure for hydrogen hydrate under high pressure [J]. Journal of Physics: Conference Series, 2010, 215(1): 012060. doi: 10.1088/1742-6596/215/1/012060 [29] STOICHEFF B P. High resolution Raman spectroscopy of gases: IX. spectra of H2, HD, and D2 [J]. Canadian Journal of Physics, 1957, 35(6): 730–741. doi: 10.1139/p57-079 [30] SHARMA S K, MAO H K, BELL P M. Raman measurements of hydrogen in the pressure range 0.2-630 kbar at room temperature [J]. Physical Review Letters, 1980, 44(13): 886–888. doi: 10.1103/PhysRevLett.44.886