斜波压缩下锡的相变动力学特性

种涛 赵剑衡 谭福利 王桂吉

种涛, 赵剑衡, 谭福利, 王桂吉. 斜波压缩下锡的相变动力学特性[J]. 高压物理学报, 2020, 34(1): 011101. doi: 10.11858/gywlxb.20190828
引用本文: 种涛, 赵剑衡, 谭福利, 王桂吉. 斜波压缩下锡的相变动力学特性[J]. 高压物理学报, 2020, 34(1): 011101. doi: 10.11858/gywlxb.20190828
CHONG Tao, ZHAO Jianheng, TAN Fuli, WANG Guiji. Dynamic Characteristics of Phase Transition of Tin under Ramp Wave Loading[J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 011101. doi: 10.11858/gywlxb.20190828
Citation: CHONG Tao, ZHAO Jianheng, TAN Fuli, WANG Guiji. Dynamic Characteristics of Phase Transition of Tin under Ramp Wave Loading[J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 011101. doi: 10.11858/gywlxb.20190828

斜波压缩下锡的相变动力学特性

doi: 10.11858/gywlxb.20190828
基金项目: 国家自然科学基金青年基金(11702276);四川省青年科技创新研究团队专项计划项目(2016TD0022)
详细信息
    作者简介:

    种 涛(1986-),男,博士,主要从事动高压实验加载技术和材料动力学行为研究.E-mail: maoda318@163.com

    通讯作者:

    赵剑衡(1969-),男,博士,研究员,博士生导师,主要从事强激光破坏机理、爆轰物理、冲击动力学、超高速发射和超高压力加载技术研究. E-mail: jianh_zhao@sina.com

  • 中图分类号: O521.2

Dynamic Characteristics of Phase Transition of Tin under Ramp Wave Loading

  • 摘要: 利用磁驱动加载装置(CQ-4)和高精度速度测试装置(DPV),开展了斜波加载下锡的动态压缩实验。实验结果表明:锡在加载阶段经历了弹塑性转变和相变等物理过程,相变压力约为7.5 GPa。βγ相变对应的特征速度随着锡厚度的增加,从676.3 m/s减小到636.8 m/s,对应的压力从7.62 GPa降低到7.11 GPa。结合Hayes多相状态方程和非平衡相变动力学模型,对锡的斜波压缩实验过程进行了模拟,数值计算结果可以较好地描述锡在加载阶段的弹塑性转变和相变等物理过程。讨论了体模量在不同热力学过程中的物理形式,计算结果显示,斜波压缩过程需考虑压力对体模量的修正。分析了相变弛豫时间、体模量等典型物理参数对速度波形的影响,结果表明,相变弛豫时间和各相初始自由能主要影响混合区部分速度波形,γ相的体模量参数只影响相变后的速度波形,β相的体模量参数会影响整体速度波形。

     

  • 图  磁驱动斜波实验负载区样品布局图

    Figure  1.  Schematic diagram of magnetically driven ramp wave loading and the samples

    图  Shot 714实验测量的自由面速度剖面

    Figure  2.  Experimental free surface velocities of shot 714

    图  实验加载压力(a)以及计算与实验速度波形(b)

    Figure  3.  The loading pressure(a) and the calculated and experimental velocities (b)

    图  计算和实验自由面速度对比

    Figure  4.  Comparison of measured free surface velocitywith calculated values

    图  0.7 μs时压力和γ相质量分数沿样品厚度方向分布

    Figure  5.  Pressure and mass fraction of γ phase along the thickness of the sample at 0.7 μs

    图  $\tau $对相变速度波形的影响

    Figure  6.  Influence of $\tau $ on velocity waveform

    图  Φ0对相变速度波形的影响

    Figure  7.  Influence of Φ0 on velocity waveform

    图  BRβ对相变速度波形的影响

    Figure  8.  Influence of BRβ on velocity waveform

    图  $B_{\scriptstyle{\rm{R}}\beta }'$对相变速度波形的影响

    Figure  9.  Influence of $B_{{\rm{R}}\beta }'$ on velocity waveform

    图  10  BRγ对相变速度波形的影响

    Figure  10.  Influence of BRγ on velocity waveform

    图  11  $B_{\scriptstyle{\rm{R}}\gamma }'$对相变速度波形的影响

    Figure  11.  Influence of $B_{{\rm{R}}\gamma }'$on velocity waveform

    表  1  实验条件

    Table  1.   Experimental condition

    Exp. No.PositionMaterialSize/(mm × mm)
    Plate_top left1100Al8.0 × 1.006
    Sample_top leftSn$\varnothing $8.0 × 1.278
    Plate_top right1100Al8.0 × 1.006
    Shot 696 Sample_top rightSn$\varnothing $8.0 × 1.568
    Plate_bottom left1100Al8.0 × 0.998
    Sample_bottom leftSn$\varnothing $8.0 × 1.871
    Plate_bottom right1100Al8.0 × 0.996
    下载: 导出CSV

    表  2  速度波剖面上的特征值

    Table  2.   Characteristic values of the velocity profiles

    Thickness of Sn/mmuEP/(m·s–1)uPT/(m·s–1)pPT/GPa
    1.27840.0676.37.62
    1.56839.6660.07.41
    1.87140.2636.87.11
    下载: 导出CSV

    表  3  锡的Helmholtz自由能计算参数[34]

    Table  3.   Parameters for the Helmholtz free energy of tin[34]

    PhasevR/(cm3·g–1)TR/KpR/GPa$\varTheta ({v_{{\rm R}}})$/Kq1BR/GPa$B_{{\rm R}}'$Φ0/(J·kg–1)Γ/(J·kg–1·K–2)α
    β0.137 2298.150180.911.6058.02.800.0151.0
    γ0.119 8298.158.664187.771.3878.10.285.3 × 1030.0151.0
    下载: 导出CSV

    表  4  锡的Steinberg模型[38]参数

    Table  4.   Parameters for the Steinberg model[38] of tin

    $\tau $/ns$\Delta {\varepsilon ^v}$Y0/GPa$\kappa $${\varepsilon _{\rm{i}}}$nA/GPa–1C/K–1
    6.0–0.0180.22 000.00.00.068.662.12 × 10–3
    下载: 导出CSV
  • [1] DUDLEY J D, HALL H T. Experimental fusion curves of indium and tin to 105 000 atmospheres [J]. Physical Review, 1960, 118(5): 1211–1216. doi: 10.1103/PhysRev.118.1211
    [2] BARNETT J D, BEAN V E, HALL H T. X-ray diffraction studies on tin to 100 kilobars [J]. Journal of Applied Physics, 1966, 37(2): 875–877. doi: 10.1063/1.1708275
    [3] DESGRENIERS S, VOHRA Y K, RUOFF A L. Tin at high pressure: an energy-dispersive X-ray-diffraction study to 120 GPa [J]. Physical Review B, 1989, 39(14): 10359–10361. doi: 10.1103/PhysRevB.39.10359
    [4] LIU M, LIU L G. Compressions and phase transitions of tin to half a megabar [J]. High Temperatures-High Pressures, 1986, 18: 79–85.
    [5] SERVAS E M. Sound-velocity doppler laser interferometry measurements on tin [C]//Shock Compression of Condensed Matter-2001. Atlanta, GA(USA): American Institute of Physics, 2002, 620: 1200–1203.
    [6] CHEONG B H, CHANG K J. First-principles study of the structural properties of tin under pressure [J]. Physical Review B: Condensed Matter, 1991, 44(9): 4103–4108. doi: 10.1103/PhysRevB.44.4103
    [7] CORKILL J L, GARCA A, COHEN M L. Erratum: Theoretical study of high-pressure phases of tin [J]. Physical Review B, 1991, 43(11): 9251–9254. doi: 10.1103/PhysRevB.43.9251
    [8] CHRISTENSEN N E, METHFESSEL M. Density-functional calculations of the structural properties of tin under pressure [J]. Physical Review B, 1993, 48(9): 5797–5807. doi: 10.1103/PhysRevB.48.5797
    [9] RAVELO R, BASKES M. Equilibrium and thermodynamic properties of grey, white, and liquid tin [J]. Physical Review Letters, 1997, 79(13): 2482–2485. doi: 10.1103/PhysRevLett.79.2482
    [10] BERNARD S, MAILLET J B. First-principles calculation of the melting curve and hugoniot of tin [J]. Physical Review B, 2002, 66(1): 012103. doi: 10.1103/PhysRevB.66.012103
    [11] AGUADO A. First-principles study of elastic properties and pressure-induced phase transitions of Sn: LDA versus GGA results [J]. Physical Review B: Condensed Matter and Materials Physics, 2003, 67(21): 212104. doi: 10.1103/PhysRevB.67.212104
    [12] YU C, LIU J, LU H, et al. Ab initio calculation of the properties and pressure induced transition of Sn [J]. Solid State Communications, 2006, 140(11/12): 538–543.
    [13] CUI S X, CAI L C, FENG W X, et al. First-principles study of phase transition of tin and lead under high pressure [J]. Physica Status Solidi, 2008, 245(1): 53–57. doi: 10.1002/pssb.200743240
    [14] TONKOV E Y, PONYATOVSKY E G. Phase transformations of elements under high pressure [M].Boca Raton, FL: CRC Press, 2005.
    [15] ANDERSON W W, CVERNA F, HIXSON R S, et al. Phase transition and spall behavior in β-tin [C]//AIP Conference Proceedings. American Institute of Physics, 2000: 443–446.
    [16] MABIRE C, HEREIL P L. Shock induced polymorphic transition and melting of tin [C]//Shock Compression of Condensed Matter-1999. New York: American Institute of Physics, 2000, 505(1): 93–96.
    [17] STAGER R A, BALCHAN A S, DRICKMER H G. High-pressure phase transition in metallic tin [J]. Journal of Chemical Physics, 1962, 37(5): 1154–1154.
    [18] STROMBERG H D, STEPHENS D R. Effects of pressure on the electrical resistance of certain metals [J]. Journal of Physics and Chemistry of Solids, 1964, 25(9): 1015–1022. doi: 10.1016/0022-3697(64)90039-3
    [19] MARTIN J E, SMITH P L. Tin and indium antimonide at very high pressures [J]. British Journal of Applied Physics, 1965, 16(4): 495–500. doi: 10.1088/0508-3443/16/4/313
    [20] VABOYA S N, KENNEDY G C. Compressibility of 18 metals to 45 kbar [J]. Journal of Physics and Chemistry of Solids, 1970, 31(10): 2329–2345. doi: 10.1016/0022-3697(70)90247-7
    [21] OHTANI A, MIZUKAMI S, KATAYAMA M, et al. Multi-anvil apparatus for high pressure X-ray diffraction [J]. Japanese Journal of Applied Physics, 1977, 16(10): 1843–1848. doi: 10.1143/JJAP.16.1843
    [22] MARSH S P. LASL shock hugoniot data [M]. Berkeley: University of California Press, 1980: 141.
    [23] CAVALERI M E, PLYMATE T G, STOUT J H. A pressure volume temperature equation of state for Sn (β) by energy dispersive X-ray diffraction in a heated diamond anvil cell [J]. Journal of Physics and Chemistry of Solids, 1988, 49(8): 945–956. doi: 10.1016/0022-3697(88)90012-1
    [24] RAYNE J A, CHANDRASEKHAR B S. Elastic constants of β tin from 4.2 K to 300 K [J]. Physical Review, 1960, 120(6): 1658–1663.
    [25] KAMIOKA H. Temperature variations of elastic moduli up to eutectic temperature in tin-bismuth alloys [J]. Japanese Journal of Applied Physics, 1983, 22(12): 1805–1809.
    [26] HU J B, ZHOU X M, DAI C D, et al. Shock-induced bct-bcc transition and melting of tin identified by sound velocity measurements [J]. Journal of Applied Physics, 2008, 104(8): 083520. doi: 10.1063/1.3003325
    [27] SONG H F, LIU H F, ZHANG G C, et al. Numerical simulation of wave propagation and phase transition of tin under shock-wave loading [J]. Chinese Physics Letters, 2009, 26(6): 066401. doi: 10.1088/0256-307X/26/6/066401
    [28] KIEFER B, DUFFY T, UCHIDA T, et al. Melting of tin at high pressures [R]. APS User Activity Report, 2002.
    [29] DAVIS J, HAYES D B. Isentropic compression experiments on dynamic solidification in tin [J]. Journal of Membrane Science, 2004, 476(1): 20–29.
    [30] HAYES D B. Wave propagation in a condensed medium with N transforming phases: application to solid-I-solid-Ⅱ-liquid bismuth [J]. Journal of Applied Physics, 1975, 46(8): 3438–3443. doi: 10.1063/1.322065
    [31] COX G A. A Multi-phase equation of state and strength model for tin [C]//Shock Compression of Condensed Matter-2005. Baltimore, Maryland (USA) : American Institute of Physics, 2006, 845(1): 208–211.
    [32] BUY F, VOLTZ C, LLORCA F. Thermodynamically based equation of state for shock wave studies: application to the design of experiments on tin [C]//Shock Compression of Condensed Matter-2005. Baltimore, Maryland (USA): American Institute of Physics, 2006, 845(1): 41–44.
    [33] KHISHCHENKO K V. Equation of state and phase diagram of tin at high pressures [J]. Journal of Physics: Conference Series, 2008, 121(2): 022025. doi: 10.1088/1742-6596/121/2/022025
    [34] 张林, 李英华, 李雪梅, 等. 锡的βγ两相物态方程 [C]//第六届全国爆炸力学实验技术学术会议, 2010: 301–307.
    [35] 种涛, 王桂吉, 谭福利, 等. 磁驱动准等熵压缩下铁的相变 [J]. 中国科学:物理学 力学 天文学, 2014, 44(6): 630–636.

    CHONG T, WANG G J, TAN F L, et al. Phase transition of iron under magnetically driven quasi-isentropic compression [J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2014, 44(6): 630–636.
    [36] WANG G J, LUO B Q, ZHANG X P, et al. A 4 MA, 500 ns pulsed power generator CQ-4 for characterization of material behaviors under ramp wave loading [J]. Review of Scientific Instruments, 2013, 84(1): 015117. doi: 10.1063/1.4788935
    [37] HALL C A, ASAY J R, KNUGSON M D, et al. Experimental configuration for isentropic compression of solids using pulsed magnetic loading [J]. Review of Scientific Instruments, 2001, 72(9): 3587–3595. doi: 10.1063/1.1394178
    [38] STEINBERG D J. Equation of state and strength properties of selected materials [R]. Livermore, California: Lawrence Livermore National Laboratory, 1996.
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  8881
  • HTML全文浏览量:  3564
  • PDF下载量:  41
出版历程
  • 收稿日期:  2019-08-28
  • 修回日期:  2019-09-26

目录

    /

    返回文章
    返回