高压下MgN8晶体结构理论模拟与物性研究

缪宇 刘思远 马雪姣 金哲学

缪宇, 刘思远, 马雪姣, 金哲学. 高压下MgN8晶体结构理论模拟与物性研究[J]. 高压物理学报, 2020, 34(1): 011102. doi: 10.11858/gywlxb.20190818
引用本文: 缪宇, 刘思远, 马雪姣, 金哲学. 高压下MgN8晶体结构理论模拟与物性研究[J]. 高压物理学报, 2020, 34(1): 011102. doi: 10.11858/gywlxb.20190818
MIAO Yu, LIU Siyuan, MA Xuejiao, JIN Zhexue. Theoretical Simulation and Physical Properties of MgN8 Crystal Structure under High Pressure[J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 011102. doi: 10.11858/gywlxb.20190818
Citation: MIAO Yu, LIU Siyuan, MA Xuejiao, JIN Zhexue. Theoretical Simulation and Physical Properties of MgN8 Crystal Structure under High Pressure[J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 011102. doi: 10.11858/gywlxb.20190818

高压下MgN8晶体结构理论模拟与物性研究

doi: 10.11858/gywlxb.20190818
基金项目: 国家自然科学基金(11764043);吉林省科技厅发展计划项目(20180101226JC)
详细信息
    作者简介:

    缪 宇(1999-),男,本科,主要从事高压结构计算研究. E-mail: 15053219411@163.com

    通讯作者:

    金哲学(1971-),男,讲师,主要从事计算机网络通信技术与研发研究.E-mail: jinzhexue@ybu.edu.cn

  • 中图分类号: O521.2

Theoretical Simulation and Physical Properties of MgN8 Crystal Structure under High Pressure

  • 摘要: 基于密度泛函理论第一性原理的方法,使用CALYPSO结构搜索技术结合VASP软件,在0~100 GPa压强范围内对MgN8的晶体结构进行预测,并对预测的结构进行系统研究。结果表明:在常压下,空间群为P4/mbmα-MgN8晶体结构的焓值最低;当压强达到24.3 GPa和68.3 GPa时发生相变,分别相变成空间群为P4/mncβ-MgN8相和空间群为Cmcmγ-MgN8相,两次相变均为对应体积坍塌的一级相变。电子性质计算结果表明,α-MgN8相的导带与价带之间具有3.09 eV的带隙,表明该结构具有非金属性;β相和γ相具有明显的金属特征。Bader电荷转移计算表明,随着压力的增加,Mg原子向N原子转移的电荷逐渐增多。

     

  • 图  MgN8的焓差曲线以及α-MgN8β-MgN8γ-MgN8相体积随压强的变化关系

    Figure  1.  Calculated enthalpies per formula unit of pressure of MgN8 and the calculated volume versus pressure of α-MgN8, β-MgN8 and γ-MgN8

    图  α-MgN8β-MgN8γ-MgN8相的晶体结构

    Figure  2.  Crystal structures of α-MgN8, β-MgN8 and γ-MgN8

    图  α-MgN8β-MgN8γ-MgN8相声子色散关系和声子态密度

    Figure  3.  Phonon-dispersion curves and the phonon density of states of α-MgN8, β-MgN8 and γ-MgN8

    图  α-MgN8β-MgN8γ-MgN8相的能带结构和电子态密度

    Figure  4.  Band structure and partial density of states of α-MgN8, β-MgN8 and γ-MgN8

    图  α-MgN8β-MgN8γ-MgN8相的电子局域函数

    Figure  5.  Electron localization function of α-MgN8, β-MgN8 and γ-MgN8

    表  1  α-MgN8β-MgN8γ-MgN8相的平衡态晶格常数

    Table  1.   Lattice parameters of α-MgN8, β-MgN8 and γ-MgN8 in the equilibrium state

    PhasePressure/GPaabcα/(°)β/(°)γ/(°)
    α-MgN8 (P4/mbm)0 5.9135.9136.57290.090.090.0
    β-MgN8 (P4/mnc)24.36.2196.2193.72490.090.090.0
    γ-MgN8 (Cmcm)68.34.1674.1678.68090.090.051.1
    下载: 导出CSV

    表  2  α-MgN8β-MgN8γ-MgN8相的平衡态晶格常数和原子位置

    Table  2.   Lattice parameters and atomic coordinate of α-MgN8, β-MgN8 and γ-MgN8 in the equilibrium state

    PhasePressure/GPaAtomsWyckoff positionxyz
    α-MgN8 (P4/mbm)0 Mg 2b0.0000.0000.500
    N1 2a0.0000.0000.000
    N2 2c0.0000.5000.500
    N3 4e0.0000.0000.821
    N4 4f0.0000.5000.915
    N5 4h0.8590.3590.500
    β-MgN8 (P4/mnc)24.3Mg 2a0.0000.0001.000
    N16i0.4160.2190.823
    γ-MgN8 (Cmcm)68.3Mg 8g0.624–0.376 1.250
    N116h0.226–0.135 0.617
    N216h1.1150.4711.386
    下载: 导出CSV

    表  3  α-MgN8β-MgN8γ-MgN8相电荷转移

    Table  3.   Calculated Bader charges of α-MgN8, β-MgN8 and γ-MgN8

    PhasePressure/GPaAtomsNumberCharge value/eCharge transfer/e
    α-MgN8 (P4/mbm)0Mg16.26 1.74
    N114.84 0.16
    N214.86 0.13
    N325.04–0.04
    N425.46–0.46
    N525.52–0.52
    β-MgN8 (P4/mnc)24.3Mg16.06 1.94
    N85.24–0.24
    γ-MgN8 (Cmcm)68.3Mg15.80 2.20
    N145.28–0.28
    N245.27–0.27
    下载: 导出CSV
  • [1] GROCHALA W, HOFFMANN R, FENG J, et al. The chemical imagination at work in very tight places [J]. Angewandte Chemie International Edition, 2007, 46(20): 3620–3642. doi: 10.1002/anie.200602485
    [2] HEMLEY R J. Effects of high pressure on molecules [J]. Annual Review of Physical Chemistry, 2000, 51(1): 763–800. doi: 10.1146/annurev.physchem.51.1.763
    [3] SCHETTINO V, BINI R. Molecules under extreme conditions: chemical reactions at high pressure [J]. Physical Chemistry Chemical Physics, 2003, 5(10): 1951–1965. doi: 10.1039/b301381b
    [4] 李鑫, 马雪姣, 高文泉, 等. 高压下Ir2P晶体结构预测与物理性质 [J]. 高压物理学报, 2019, 33(1): 011103. doi: 10.11858/gywlxb.20180645

    LI X, MA X J, GAO W Q, et al. Evolution of crystal structures and electronic properties for Ir2P under high pressure [J]. Chinese Journal of High Pressure Physics, 2019, 33(1): 011103. doi: 10.11858/gywlxb.20180645
    [5] MA X J, LI X, ZHOU D, et al. Phase diagram and bonding states of Ir-P binary compounds at high pressures [J]. Journal of Alloys and Compounds, 2019, 791: 1257–1262. doi: 10.1016/j.jallcom.2019.03.051
    [6] BRULS R J, HINTZEN H T, METSELAAR R. Preparation and characterisation of MgSiN2 powders [J]. Journal of Materials Science, 1999, 34(18): 4519–4531. doi: 10.1023/A:1004645407523
    [7] PARKIN I P, NARTOWSKI A M. Solid state metathesis routes to Group IIIa nitrides: comparison of Li3N, NaN3, Ca3N2 and Mg3N2 as nitriding agents [J]. Polyhedron, 1998, 17(16): 2617–2622. doi: 10.1016/S0277-5387(97)00454-3
    [8] KOBASHI M, OKAYAMA N, CHOH T. Synthesis of AlN/Al alloy composites by in situ reaction between Mg3N2 and aluminum [J]. Materials Transactions, JIM, 1997, 38(3): 260–265. doi: 10.2320/matertrans1989.38.260
    [9] EREMETS M I, GAVRILIUK A G, TROJAN I A, et al. Single-bonded cubic form of nitrogen [J]. Nature Materials, 2004, 3(8): 558–563. doi: 10.1038/nmat1146
    [10] LORENZ H, KÜHNE U, HOHLFELD C, et al. Influence of MgO on the growth of cubic boron nitride using the catalyst Mg3N2 [J]. Journal of Materials Science Letters, 1988, 7(1): 23–24. doi: 10.1007/BF01729904
    [11] PAPACONSTANTOPOULOS D A, PICKETT W E, KLEIN B M, et al. Electronic properties of transition-metal nitrides: the group-V and group-VI nitrides VN, NbN, TaN, CrN, MoN, and WN [J]. Physical Review B, 1985, 31(2): 752–761. doi: 10.1103/PhysRevB.31.752
    [12] MENG Y, MAO H K, ENG P J, et al. The formation of sp3 bonding in compressed BN [J]. Nature Materials, 2004, 3(2): 111–114. doi: 10.1038/nmat1060
    [13] RAZA Z, PICKARD C J, PINILLA C, et al. High energy density mixed polymeric phase from carbon monoxide and nitrogen [J]. Physical Review Letters, 2013, 111(23): 235501. doi: 10.1103/PhysRevLett.111.235501
    [14] KNITTLE E, WENTZCOVITCH R M, JEANLOZ R, et al. Experimental and theoretical equation of state of cubic boron nitride [J]. Nature, 1989, 337(6205): 349–352. doi: 10.1038/337349a0
    [15] XIA Y, LI Q, MA Y M. Novel superhard polymorphs of Be3N2 predicted by first-principles [J]. Computational Materials Science, 2010, 49(1): S76–S79. doi: 10.1016/j.commatsci.2010.01.045
    [16] ZHU S S, PENG F, LIU H Y, et al. Stable calcium nitrides at ambient and high pressures [J]. Inorganic Chemistry, 2016, 55(15): 7550–7555. doi: 10.1021/acs.inorgchem.6b00948
    [17] JI D P, CHONG X Y, FENG J. Electronic, mechanical and hydrogen storage properties of novel Mg3N2 [J]. Journal of Alloys and Compounds, 2019, 800: 8–15. doi: 10.1016/j.jallcom.2019.06.021
    [18] WANG Y C, LV J, ZHU L, et al. Crystal structure prediction via particle-swarm optimization [J]. Physical Review B, 2010, 82(9): 094116. doi: 10.1103/PhysRevB.82.094116
    [19] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations [J]. Physical Review B, 1976, 13(12): 5188. doi: 10.1103/PhysRevB.13.5188
    [20] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1996, 77(18): 3865–3868. doi: 10.1103/PhysRevLett.77.3865
    [21] BORN M, HUANG K. Dynamical theory of crystal lattices [J]. American Journal of Physics, 1954, 39(2): 113–127.
    [22] BECKE A D, EDGECOMBE K E. A simple measure of electron localization in atomic and molecular systems [J]. The Journal of Chemical Physics, 1990, 92(9): 5397–5403. doi: 10.1063/1.458517
    [23] BADER R F W. Atoms in molecules [J]. Accounts of Chemical Research, 1985, 18(1): 9–15. doi: 10.1021/ar00109a003
    [24] OGANOV A R, CHEN J H, GATTI C, et al. Ionic high-pressure form of elemental boron [J]. Nature, 2009, 457(7231): 863–867. doi: 10.1038/nature07736
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  8240
  • HTML全文浏览量:  4004
  • PDF下载量:  65
出版历程
  • 收稿日期:  2019-08-06
  • 修回日期:  2019-09-25

目录

    /

    返回文章
    返回