石英玻璃球撞击刚性壁的破碎过程

方继松 王珠 熊迅 郑宇轩 周风华

方继松, 王珠, 熊迅, 郑宇轩, 周风华. 石英玻璃球撞击刚性壁的破碎过程[J]. 高压物理学报, 2020, 34(1): 014101. doi: 10.11858/gywlxb.20190764
引用本文: 方继松, 王珠, 熊迅, 郑宇轩, 周风华. 石英玻璃球撞击刚性壁的破碎过程[J]. 高压物理学报, 2020, 34(1): 014101. doi: 10.11858/gywlxb.20190764
FANG Jisong, WANG Zhu, XIONG Xun, ZHENG Yuxuan, ZHOU Fenghua. Fragmentation Process of Quartz Glass Spheres Impacting Rigid Wall[J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 014101. doi: 10.11858/gywlxb.20190764
Citation: FANG Jisong, WANG Zhu, XIONG Xun, ZHENG Yuxuan, ZHOU Fenghua. Fragmentation Process of Quartz Glass Spheres Impacting Rigid Wall[J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 014101. doi: 10.11858/gywlxb.20190764

石英玻璃球撞击刚性壁的破碎过程

doi: 10.11858/gywlxb.20190764
基金项目: 国家自然科学基金(11390361)
详细信息
    作者简介:

    方继松(1993-),男,硕士研究生,主要从事冲击动力学研究. E-mail: 2633186318@qq.com

    通讯作者:

    周风华(1964-),男,博士,研究员,主要从事冲击动力学研究. E-mail: zhoufenghua@nbu.edu.cn

  • 中图分类号: O347

Fragmentation Process of Quartz Glass Spheres Impacting Rigid Wall

  • 摘要: 利用高速枪对石英玻璃球撞击刚性靶板进行了实验研究,分析了不同速度下球体的破碎过程和失效模式。当冲击速度低于临界破坏速度时,石英玻璃球以略低于原速从靶板回弹;当超过临界破坏速度时,球体呈现“压缩破碎区-表面剥落区-剪切破坏区”的破坏结构;进一步提高碰撞速度,剪切破坏区的扩展导致球体碎裂为若干“月牙状”的碎块;更高撞击速度下,石英玻璃球发生坍塌式破碎,在远离撞击端处产生层裂现象。利用离散元软件对球体的撞击破坏过程进行了模拟研究,球体在高速碰撞下的破碎可以分为弹性压缩、整体破碎和二次撞击3个阶段。球体碎裂前Hertz接触理论可以较好描述其撞击力,而破碎后的撞击力由于碎裂卸载远小于理论值,且偏差随冲击速度逐渐增加。

     

  • 图  实验装置示意图

    Figure  1.  Schematic of experimental device

    图  临界速度以下碰撞前(a)、后(b)球体形貌

    Figure  2.  Sphere before (a) and after (b) impact under critical velocity

    图  石英玻璃球撞击刚性壁典型的破碎过程

    Figure  3.  Typical fracture process of sphere impact rigid wall

    图  不同撞击速度下球体的破碎形貌

    Figure  4.  Shape of spheres under different impact velocities

    图  不同冲击速度下碎片回收形貌

    Figure  5.  Shape of the fragments at different impact velocities

    图  78 m/s冲击速度下石英玻璃球的破碎过程

    Figure  6.  Fragmentation process of quartz glass sphere at 78 m/s

    图  球体速度、所受载荷和内部裂纹随时间变化曲线

    Figure  7.  Sphere velocity, impact force and internal crack versus time

    图  不同冲击速度下球体速度-时间曲线

    Figure  8.  Velocity-time curves at different impact velocities

    图  不同冲击速度下球体所受载荷

    Figure  9.  Impact forces of spheres under different impact velocities

    图  10  模拟撞击力与Hertz接触理论对比

    Figure  10.  Comparison of simulated impact forces with Hertz contact theory

    表  1  石英玻璃离散元模型的主要微观参数

    Table  1.   Main microscopic parameters of discrete element mode of quartz glass

    Effective modulus of linear contact/GPaNormal to shear stiffness ratio of linear contactPorosityMinimum radius of particles/mmSize ratio of maximum and minimum particlesTensile strength of contact/MPaShear strength of contact/MPa
    552.90.20.11.5300600
    下载: 导出CSV

    表  2  石英玻璃在常态下的物理参数

    Table  2.   Physical properties of quartz glass under ambient condition

    MethodEquivalent density/(kg·m–3)Elastic modulus/GPaPoisson’s ratioCompressive strength/MPaTensile strength/MPaBending strength/MPaFracture toughness/(N·m–3/2)
    Manufacture provide2.20377.80.1708605067.00.78
    DEM numerical simulation2.20378.00.1727985067.40.85
    下载: 导出CSV
  • [1] 刘瑜, 杜长龙, 付林, 等. 煤块冲击破碎速度研究 [J]. 振动与冲击, 2011, 30(3): 18–21. doi: 10.3969/j.issn.1000-3835.2011.03.005

    LIU Y, DU C L, FU L, et al. Impact crushing velocity of lump coal [J]. Journal of Vibration and Shock, 2011, 30(3): 18–21. doi: 10.3969/j.issn.1000-3835.2011.03.005
    [2] 李艳焕, 邵良杉, 徐振亮. 煤粒冲击粉碎临界速度的数值实验分析 [J]. 振动与冲击, 2017, 36(5): 227–230.

    LI Y H, SHAO L B, XU Z L. Numerical analysis for critical velocity of coal impacting and comminution [J]. Journal of Vibration and Shock, 2017, 36(5): 227–230.
    [3] 沈位刚, 赵涛, 唐川, 等. 落石冲击破碎特征的加载率相关性研究 [J]. 工程科学与技术, 2018(1): 43–50.

    SHEN W G, ZHAO T, TANG C, et al. Loading rate dependency of impact induced rock fragmentation during rockfall [J]. Advanced Engineering Sciences, 2018(1): 43–50.
    [4] 房丽娜, 马正先, 李慧, 等. 粉碎设备及技术的发展历程与研究进展 [J]. 有色矿冶, 2005(Suppl 1): 178–180.

    FANG L N, MA Z X, LI H, et al. Development history and research progress of crushing equipment and technology [J]. Non-Ferrous Mining and Metallurgy, 2005(Suppl 1): 178–180.
    [5] ANDREWS E W, KIM K S. Threshold conditions for dynamic fragmentation of glass particles [J]. Mechanics of Materials, 1999, 31(11): 689–703. doi: 10.1016/S0167-6636(99)00024-1
    [6] ANDREWS E W, KIM K S. Threshold conditions for dynamic fragmentation of ceramic particles [J]. Mechanics of Materials, 1998, 29(11): 161–180.
    [7] SALMAN A D, GORHAM D A. The fracture of glass spheres [J]. Powder Technology, 2000, 107(1): 179–185.
    [8] SALMAN A D, GORHAM D A, VERBA A. A study of solid particle failure under normal and oblique impact [J]. Wear, 1995, 186(95): 92–98.
    [9] SALMAN A D, REYNOLDS G K, FU J S, et al. Descriptive classification of the impact failure modes of spherical particles [J]. Powder Technology, 2004, 143(26): 19–30.
    [10] CHAU K T, WEI X X, WONG R H C, et al. Fragmentation of brittle spheres under static and dynamic compressions: experiments and analyses [J]. Mechanics of Materials, 2000, 32(9): 543–554. doi: 10.1016/S0167-6636(00)00026-0
    [11] WU S Z, CHAU K T, YU T X. Crushing and fragmentation of brittle spheres under double impact test [J]. Powder Technology, 2004, 143/144: 41–55. doi: 10.1016/j.powtec.2004.04.028
    [12] 易洪昇, 徐松林, 单俊芳, 等. 不同加载速度下脆性颗粒的破坏特性 [J]. 爆炸与冲击, 2017, 37(5): 913–922. doi: 10.11883/1001-1455(2017)05-0913-10

    YI H S, XU S L, SHAN J F, et al. Fracture characteristics of brittle particles at different loading velocities [J]. Explosion and Shock Waves, 2017, 37(5): 913–922. doi: 10.11883/1001-1455(2017)05-0913-10
    [13] POTYONDY D O. A bonded-particle model for rock [J]. International Journal of Rock Mechanics & Mining Sciences, 2004, 41(8): 1329–1364.
    [14] SHEN W G, ZHAO T, CROSTA G B, et al. Analysis of impact-induced rock fragmentation using a discrete element approach [J]. International Journal of Rock Mechanics & Mining Sciences, 2017, 98: 33–38.
    [15] CARMONA H A, WITTEL F K, KUN F, et al. Fragmentation processes in impact of spheres [J]. Physical Review E, 2008, 77(5): 051302.
    [16] XIA M, ZHAO C B. Simulation of rock deformation and mechanical characteristics using clump parallel-bond models [J]. Journal of Central South University, 2014, 21(7): 2885–2893. doi: 10.1007/s11771-014-2254-3
    [17] YANG B, JIAO Y, LEI S. A study on the effects of microparameters on macroproperties for specimens created by bonded particles [J]. Engineering Computations, 2006, 23(6): 607–631. doi: 10.1108/02644400610680333
    [18] PARK J W, SONG J J. Numerical simulation of a direct shear test on a rock joint using a bonded-particle model [J]. International Journal of Rock Mechanics & Mining Sciences, 2009, 46(8): 1315–1328.
    [19] 熊迅, 李天密, 马棋棋, 等. 石英玻璃圆环高速膨胀碎裂过程的离散元模拟 [J]. 力学学报, 2018, 50(3): 178–188.

    XIONG X, LI T M, MA Q Q, et al. Discrete element simulation of the high velocity expansion and fragmentation of quartz glass rings [J]. Chinese Journal Theoretical and Applied Mechanics, 2018, 50(3): 178–188.
    [20] KNIGHT C G, SWAIN M V, CHAUDHRI M M. Impact of small steel spheres on glass surfaces [J]. Journal of Materials Science, 1977, 12(8): 1573–1586. doi: 10.1007/BF00542808
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  11668
  • HTML全文浏览量:  4160
  • PDF下载量:  68
出版历程
  • 收稿日期:  2019-04-23
  • 修回日期:  2019-05-15
  • 刊出日期:  2019-09-25

目录

    /

    返回文章
    返回