Measurement of Hugoniot Relation for JB-9014 Insensitive Explosive
-
摘要: 采用火炮加载技术对JB-9014钝感炸药进行一维平面冲击实验。通过激光干涉测速仪测量冲击波到达炸药样品前、后表面的时刻以及炸药/镀膜氟化锂窗口界面粒子速度。利用冲击波到达炸药样品前、后表面的时刻差和炸药样品的厚度计算出冲击波在炸药样品中的传播速度,并结合炸药样品/氟化锂窗口接触面处粒子速度求出炸药样品冲击波后粒子速度,进而获得了炸药样品在3.1~9.7 GPa压力范围内的冲击Hugoniot关系。对炸药样品中冲击波速度以及波后粒子速度进行不确定度分析,得到炸药样品中冲击波速度和波后粒子速度的合成标准不确定度约为0.54%和1.7%。将未反应炸药的冲击Hugoniot曲线和冲击波阵面的Rankine-Hugoniot关系进行联立得到冲击波后炸药样品内的压力和密度,进而拟合得到炸药样品在冲击绝热状态下沿(p,ρ)面的p-ρ曲线。
-
关键词:
- 激光干涉测速仪 /
- 冲击Hugoniot关系 /
- 钝感炸药 /
- 粒子速度 /
- 不确定度
Abstract: In this paper we measured the Hugoniot data for JB-9014 explosive by measuring the times when the shock wave reached the surfaces of the explosive sample and the particle velocity at the sample/window interface on a gun using PDV.Calculating the difference between the times when the shock wave reaches the front and the back surfaces of the sample explosive and its thickness, we figured out the propagation velocity of the shockwave in the sample, and found that the combined standard uncertainties of the shock velocity and the particle velocity were 0.54% and 1.7% within the pressure range of 3.1-9.7 GPa, through uncertainty analysis.Moreover, we also derived the relation between the pressure and the density of the JB-9014 explosive sample from the simultaneous equation of the Hugoniot relation and the Rankine-Hugoniot relationship of the shock wave form and obtained the fitted p-ρ curve in the sample along the (p, ρ) surface under heat-insulated shock.-
Key words:
- PDV /
- Hugoniot relation /
- insensitive explosive /
- particle velocity /
- uncertainty
-
表 1 实验测量结果
Table 1. Experimental measurement results
Experiment No. Experiment set-up ρ0/(g·cm-3) W/(km·s-1) uw/(km·s-1) us/(km·s-1) Ds/(km·s-1) ps/GPa ρs/(g·cm-3) Shot 1 Sapphire flyer 1.894 0.689 0.363 0.574 3.647 40 3.9660 2.246 5 Shot 2 Sapphire+JB-9014 explosive 1.893 0.805 0.484 0.735 3.990 23 5.551 5 2.3204 Shot 3 Sample (5 mm)+ LiF window 1.893 1.076 0.625 0.913 4.36933 7.552 7 2.393 0 Shot 4 1.898 1.324 0.766 1.084 4.726 97 9.7265 2.456 3 Shot 5 Sapphire flyer 1.893 0.696 0.216 0.480 3.433 3.119 2.2000 Shot 6 JB-9014 explosive 1.889 0.918 0.300 0.618 3.788 4.422 2.257 3 Shot 7 Sample (20 mm) + LiF 1.893 1.173 0.394 0.779 4.028 5.941 2.3469 Shot 8 Window+(PDV) 1.891 1.490 0.527 0.963 4.501 8.196 2.4057 Shot9 Copper flyer 1.898 0.634 0.481 3.40832 3.112 7 2.204 0 Shot10 PVDF gauge 1.898 0.989 0.604 3.77649 4.2293 2.253 4 Shot11 Cu (5 mm) + JB-9014 sample 1.893 1.003 0.639 4.00000 4.8385 2.252 9 Shot12 x2 (5 mm)+ Cu (15 mm) 1.889 1.074 0.813 4.135 71 6.350 0 2.3562 -
[1] 经福谦.实验物态方程导引[M].第2版.北京:科学出版社, 1999:197-198.JING F Q.Introduction to experimental equation of state[M].2nd Ed.Beijing:Science Press, 1999:197-198. [2] DICK J J, FOREST C A, RAMSAY J B, et al.The Hugoniot and shock sensitivity of plastic-boned TATB explosive PBX-9502[J].Journal of Applied Physics, 1988, 63(10):4881-4888. doi: 10.1063/1.340428 [3] 于川, 池家春, 刘文翰, 等.JB-9001钝感炸药Hugoniot关系测试[J].高压物理学报, 1998, 12(1):72-77. doi: 10.11858/gywlxb.1998.01.012YU C, CHI J C, LIU W H, et al.Shock Hugoniot relation of JB-9001 insensitive high explosive[J].Chinese Journal of High Pressure Physics, 1998, 12(1):72-77. doi: 10.11858/gywlxb.1998.01.012 [4] 张旭, 池家春, 冯民贤, 等.JB-9014钝感炸药冲击绝热线测量[J].高压物理学报, 2001, 15(4):304-308. doi: 10.11858/gywlxb.2001.04.011ZHANG X, CHI J C, FENG M X, et al.Hugoniot relation of JB-9014 insensitive high explosive[J].Chinese Journal of High Pressure Physics, 2001, 15(4):304-308. doi: 10.11858/gywlxb.2001.04.011 [5] GUSTAVSEN R L, SHEFFIELD S A, ALCON R R.Measurement of shock initiation in the tri-amino-tri-nitro-benzene based explosive PBX9502:wave forms embedded gauges and comparison of four different material lots[J].Journal of Applied Physics, 2006, 99(11):1-17. https://www.researchgate.net/publication/241612546_Shock_Initiation_of_Virgin_and_Recycled_PBX_9502_Measured_with_Embedded_Electromagnetic_Particle_Velocity_Gauges [6] DICK J J, MARTINEZ A R, HIXSON R S. Plane impact response of PBX-9501 and its components below 2 GPa: LA-13426-MS[R]. Los Alamos, NM: Los Alamos National Laboratory, 1998. [7] ZI P D, CHEN J, ZHANG X, et al.Double shock experiments on PBX explosive JOB-9003[J].Propellants, Explosives, Pyrotechnics, 2017, 42(7):784-790. doi: 10.1002/prep.v42.7 [8] 王延飞, 刘杰, 张旭, 等.未反应炸药JOB-9003的JWL状态方程[J].高压物理学报, 2016, 30(5):387-391. doi: 10.11858/gywlxb.2016.05.007WANG Y F, LI J, ZHANG X, et al.JWL equation of state of unreacted JBO-9003 explosive[J].Chinese Journal of High Pressure Physics, 2016, 30(5):387-391. doi: 10.11858/gywlxb.2016.05.007 [9] FU H, LI T, TAN D W.Shock Hugoniot relation of unreacted heterogeneous explosive[J].International Journal of Modern Physics B, 2011, 25(21):2905-2913. doi: 10.1142/S0217979211100527 [10] 李维新.一维不定常流与冲击波[M].北京:国防工业出版社, 2003:212-214.LI W X.One-dimensional non-steady flow and shock waves[M].Beijing:National Defense Industry Press, 2003:212-214. [11] SATO Y, YOSHIDA M, NAGAYAMA K, et al.Stress-strain relationship of polycarbonate over a wide range of strain rate, including a shock wave regime[J].International Journal of Impact Engineering, 2008, 35(12):1778-1783. doi: 10.1016/j.ijimpeng.2008.07.045 [12] 蒋贵芳.(0~100)mm数显千分尺示值误差测量结果的不确定度评定[J].计量与测试技术, 2012, 39(4):69-70. http://www.doc88.com/p-639423849360.htmlJIANG G F.Uncertainly assessment of the measuring result of (0-100 mm) digital micrometer error[J].Metrology & Measurement Technique, 2012, 39(4):69-70. http://www.doc88.com/p-639423849360.html [13] 戴诚达, 王翔, 谭华.Hugoniot实验的粒子速度测量不确定度分析[J].高压物理学报, 2005, 19(2):113-119. doi: 10.11858/gywlxb.2005.02.003DAI C D, WANG X, TAN H.Evaluation for uncertainly of particle velocity in Hugoniot measurement[J].Chinese Journal of High Pressure Physics, 2005, 19(2):113-119. doi: 10.11858/gywlxb.2005.02.003 [14] 谭叶, 俞宇颖, 戴诚达, 等.反向碰撞法测量Bi的低压Hugoniot数据[J].物理学报, 2011, 60(10):106401. doi: 10.7498/aps.60.106401TAN Y, YU Y Y, DAI C D, et al.Measurement of low-pressure Hugoniot data for bismuth with reverse-impact geometry[J].Acta Physics Sinica, 2011, 60(10):106401. doi: 10.7498/aps.60.106401