Short Pulse Shock Initiation Criteria for HNS-Ⅳ Explosive
-
摘要: 飞片冲击起爆HNS-Ⅳ炸药是直列式传爆序列的重要研究方向。考虑到能量加载方式(一般为电爆炸驱动、微装药驱动和激光驱动)和飞片材料对冲击起爆的影响, 根据文献测量的飞片阈值速度拟合得到了HNS-Ⅳ炸药pnτ和James判据的系数。同时, 利用ANSYS/LS-DYNA程序模拟了铜叠氮化物爆炸驱动飞片冲击起爆HNS-Ⅳ炸药的过程, 并根据数值模拟结果修正了HNS-Ⅳ炸药pnτ和James判据的系数。结果表明, HNS-Ⅳ炸药的pnτ(其中p为压力, τ为脉冲作用时间)判据应该调整为p2.08τ>1.54 GPa2.08·μs(0.001 μs< τ < 0.14 μs, 3.8 GPa <p < 28.0 GPa), James判据应调整为0.215/Σ+0.108/E<1(Σ为比动能, E为能通量)。调整后的起爆判据与数值模拟结果相一致, 并具有更高的实用性。Abstract: Flyer shock-initiated HNS-Ⅳ explosive is an important topic in the research of the in-line explosive train.In this study, with the influence of the energy loading method, which may be electrical explosion, laser and micro charge detonation, and flyer material on the shock initiation taken into consideration, the parameters of pnτ and the James criteria for HNS-Ⅳ explosive were obtained according to flyer threshold velocity measured by literatures.Meanwhile, the process of initiating HNS-Ⅳ explosive the flyer driven by copper azides was simulated using the ANSYS/LS-DYNA program, based on whose results the parameters of pnτ and the James criteria for HNS-Ⅳ explosive were adjusted.It was found that the pnτ criteria for HNS-Ⅳ explosive should be adjusted to p2.08τ>1.54 GPa2.08·μs(0.001 μs <τ < 0.14 μs, 3.8 GPa <p < 28.0 GPa), while the James criteria should be adjusted to 0.215/Σ+0.108/E < 1.The two adjusted criteria, which might have a higher practicability, were consistent with the simulation results.
-
Key words:
- shock initiation /
- HNS-Ⅳ /
- initiation criteria /
- numerical simulation
-
表 1 几种常见材料的Hugoniot线参数
Table 1. Parameters of Hugoniot curve of some common materials
表 2 计算结果与文献结果的比较
Table 2. Comparing calculated results with literature results
df/μm Material vf/(km·s-1) p/GPa δ1/% τ/ns δ2/% Calc. Ref. Calc. Ref. 25.0 Kapton 2.84[5] 10.43 9.8[5] 6.43 10.80 10.3[5] 4.85 76.0 Kapton 1.84[5] 5.22 5.3[5] 1.51 38.00 36.3[5] 4.68 140.0 Kapton 1.51[5] 4.09 4.0[5] 2.25 73.80 70.8[5] 4.24 165.0 Kapton 1.53[5] 4.16 4.1[5] 1.46 86.70 83.1[5] 4.33 254.0 Kapton 1.46[5] 3.90 3.8[5] 2.63 135.00 130.0[5] 3.85 3.0 Al 3.66[4] 27.27 27.1[4] 0.63 1.61 1.6[4] 0.62 3.5 Al 3.30[4] 23.25 23.1[4] 0.65 1.96 1.9[4] 3.16 4.0 Al 3.16[4] 21.76 21.6[4] 0.74 2.28 2.2[4] 3.64 4.5 Al 2.92[4] 19.29 19.1[4] 0.99 2.64 2.6[4] 1.54 5.0 Al 2.77[4] 17.81 17.7[4] 0.62 2.99 2.9[4] 3.10 25.0 Kapton 2.96[4] 11.12 11.1[4] 0.18 10.70 10.7[4] 0 表 3 铜叠氮化物爆炸驱动飞片起爆HNS-Ⅳ炸药的模拟结果
Table 3. Simulation results of initiating HNS-Ⅳ explosive by micro-charge detonation-driven flyer
Explosive size/(mm×mm) vf/(km·s-1) p/GPa τ/ns u/(km·s-1) p2.08τ/(GPa2.08·μs) $ \frac{{0.1900}}{\mathit\Sigma } + \frac{{0.0954}}{E}$ Simulation results ∅0.8×0.3 2.29 15.70 4.381 1.68 1.35 0.960 Non-detonation ∅0.8×0.4 2.43 17.16 4.155 1.76 1.54 0.883 Non-detonation ∅0.8×0.5 2.62 19.23 3.881 1.88 1.82 0.787 Detonation ∅0.8×0.6 2.67 19.79 3.815 1.91 1.90 0.766 Detonation ∅0.8×0.7 2.82 21.50 3.628 2.00 2.14 0.707 Detonation ∅0.8×0.8 2.86 21.96 3.581 2.03 2.21 0.690 Detonation ∅0.4×0.5 2.45 17.38 2.062 1.78 0.78 1.620 Non-detonation ∅0.5×0.5 2.56 18.57 2.477 1.85 1.08 1.230 Non-detonation ∅0.6×0.5 2.58 18.79 2.952 1.86 1.32 1.030 Non-detonation ∅0.7×0.5 2.61 19.12 3.408 1.88 1.58 0.886 Detonation ∅0.9×0.5 2.61 19.12 4.381 1.88 2.03 0.713 Detonation ∅1.0×0.5 2.61 19.12 4.868 1.88 2.25 0.653 Detonation -
[1] JAMES H R.Critical energy criterion for the shock initiation of explosives by projectile impact[J].Propellants, Explosives, Pyrotechnics, 1988, 13(2):35-41. doi: 10.1002/(ISSN)1521-4087 [2] JAMES H R.An extension to the critical energy criterion used to predict shock initiation thresholds[J].Propellants, Explosives, Pyrotechnics, 1996, 21(1):8-13. doi: 10.1002/(ISSN)1521-4087 [3] HASKINS P J, COOK M D. A modified criterion for the prediction of shock initiation threshold for flyer plate and rod impacts[C]//14th International Detonation Symposium. Coeur d'Alene Resort, Idaho, 2010. [4] BOWDEN M, MAISEY M P, KNOWLES S. Shock initiation of hexanitrostilbene at ultra-high shock pressures and critical energy determination[C]//AIP Conference Proceedings. Maryland: AIP Publishing, 2012, 1426(1): 615-618. [5] SCHWARZ A C. Study of factors which influence the shock-initiation sensitivity of hexanitrostilbene (HNS): SAND-80-2372[R]. Albuquerque, NM: Sandia National Laboratory, 1981. [6] BOWDEN M D, MAISEY M P. Determination of critical energy criteria for hexanitrostilbene using laser-driven flyer plates[C]//Optical Engineering & Applications. International Society for Optics and Photonics, 2008: 707004. [7] WALKER F E, WASLEY R J.Critical energy for shock initiation of heterogeneous explosives[J].Explosive Stoffe, 1969, 17(1):9-14. http://www.worldcat.org/title/critical-energy-for-shock-initiation-of-heterogeneous-explosives/oclc/829388221 [8] YADAV H S.Initiation of detonation in explosives by impact of projectiles[J].Defence Science Journal, 2006, 56(2):169-177. doi: 10.14429/dsj [9] 张宝坪, 张庆明, 黄风雷.爆轰物理学[M].北京:兵器工业出版社, 2006:241-244. [10] NEAL W, BOWDEN M. High fidelity studies of exploding foil initiator bridges, Part 2: Experimental results[C]//AIP Conference Proceedings. AIP Publishing, 2017, 1793(1): 030022. [11] TARVER C M, CHIDESTER S K. Ignition and growth modeling of short pulse shock initiation experiments on fine particle Hexanitrostilbene (HNS)[C]//Journal of Physics: Conference Series. Bristol: IOP Publishing, 2014, 500(5): 052044. [12] 郭俊峰, 曾庆轩, 李明愉, 等.叠氮化铜驱动飞片起爆HNS-Ⅳ的研究[J].火工品, 2015(6):1-4. http://www.cnki.com.cn/Article/CJFDTotal-HGPI201506001.htmGUO J F, ZENG Q X, LI M Y, et al.Study on HNS-Ⅳ initiated by flyer driven by cupric azide[J].Initiators & Pyrotechnics, 2015(6):1-4. http://www.cnki.com.cn/Article/CJFDTotal-HGPI201506001.htm [13] 郭俊峰, 曾庆轩, 李明愉, 等.飞片材料对微装药驱动飞片形貌的影响[J].高压物理学报, 2017, 31(3):315-320. doi: 10.11858/gywlxb.2017.03.014GUO J F, ZENG Q X, LI M Y, et al.Influence of flyer material on morphology of flyer driven by micro charge[J].Chinese Journal of High Pressure Physics, 2017, 31(3):315-320. doi: 10.11858/gywlxb.2017.03.014 [14] ZENG Q X, LI B, LI M Y, et al.A miniature device for shock initiation of hexanitrostilbene by high-speed flyer[J].Propellants, Explosives, Pyrotechnics, 2016, 41(5):864-869. doi: 10.1002/prep.v41.5