HNS-Ⅳ炸药的短脉冲冲击起爆判据

郭俊峰 曾庆轩 李明愉 喻青霞

郭俊峰, 曾庆轩, 李明愉, 喻青霞. HNS-Ⅳ炸药的短脉冲冲击起爆判据[J]. 高压物理学报, 2018, 32(2): 025101. doi: 10.11858/gywlxb.20170582
引用本文: 郭俊峰, 曾庆轩, 李明愉, 喻青霞. HNS-Ⅳ炸药的短脉冲冲击起爆判据[J]. 高压物理学报, 2018, 32(2): 025101. doi: 10.11858/gywlxb.20170582
GUO Junfeng, ZENG Qingxuan, LI Mingyu, YU Qingxia. Short Pulse Shock Initiation Criteria for HNS-Ⅳ Explosive[J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 025101. doi: 10.11858/gywlxb.20170582
Citation: GUO Junfeng, ZENG Qingxuan, LI Mingyu, YU Qingxia. Short Pulse Shock Initiation Criteria for HNS-Ⅳ Explosive[J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 025101. doi: 10.11858/gywlxb.20170582

HNS-Ⅳ炸药的短脉冲冲击起爆判据

doi: 10.11858/gywlxb.20170582
基金项目: 

国防科技重点实验室基金 9140C370503150C37174

教育部博士点基金 20131101110009

详细信息
    作者简介:

    郭俊峰(1989—), 男, 博士研究生, 主要从事爆炸力学研究.E-mail:guojunfeng037@163.com

    通讯作者:

    曾庆轩(1964—), 男, 博士, 教授, 主要从事爆炸力学研究.E-mail:zengqingxuan@bit.edu.cn

    李明愉(1969—), 女, 博士, 副教授, 主要从事爆炸力学研究.E-mail:mingyuli@163.com

  • 中图分类号: O383;TQ563

Short Pulse Shock Initiation Criteria for HNS-Ⅳ Explosive

  • 摘要: 飞片冲击起爆HNS-Ⅳ炸药是直列式传爆序列的重要研究方向。考虑到能量加载方式(一般为电爆炸驱动、微装药驱动和激光驱动)和飞片材料对冲击起爆的影响, 根据文献测量的飞片阈值速度拟合得到了HNS-Ⅳ炸药pnτ和James判据的系数。同时, 利用ANSYS/LS-DYNA程序模拟了铜叠氮化物爆炸驱动飞片冲击起爆HNS-Ⅳ炸药的过程, 并根据数值模拟结果修正了HNS-Ⅳ炸药pnτ和James判据的系数。结果表明, HNS-Ⅳ炸药的pnτ(其中p为压力, τ为脉冲作用时间)判据应该调整为p2.08τ>1.54 GPa2.08·μs(0.001 μs< τ < 0.14 μs, 3.8 GPa <p < 28.0 GPa), James判据应调整为0.215/Σ+0.108/E<1(Σ为比动能, E为能通量)。调整后的起爆判据与数值模拟结果相一致, 并具有更高的实用性。

     

  • 图  HNS-Ⅳ炸药的p-τ曲线

    Figure  1.  Pressure versus duration for HNS-Ⅳ explosive

    图  HNS-Ⅳ炸药的E-Σ曲线

    Figure  2.  Specific kinetic energy versus energy fluence for HNS-Ⅳ explosive

    图  HNS-Ⅳ炸药的pnτ判据散点分布

    Figure  3.  Scatter distribution map of pnτ criteria for HNS-Ⅳ explosive

    图  HNS-Ⅳ炸药James判据散点分布

    Figure  4.  Scatter distribution map of James criteria for HNS-Ⅳ explosive

    表  1  几种常见材料的Hugoniot线参数

    Table  1.   Parameters of Hugoniot curve of some common materials

    Material ρ/(g·cm-3) c/(km·s-1) S
    HNS-Ⅳ[6] 1.600 0 1.430 2.630
    Al[9] 2.785 0 1.290 5.370
    Ti[6] 4.511 8 5.220 0.767
    Kapton[11] 1.414 0 2.737 1.410
    下载: 导出CSV

    表  2  计算结果与文献结果的比较

    Table  2.   Comparing calculated results with literature results

    df/μm Material vf/(km·s-1) p/GPa δ1/% τ/ns δ2/%
    Calc. Ref. Calc. Ref.
    25.0 Kapton 2.84[5] 10.43 9.8[5] 6.43 10.80 10.3[5] 4.85
    76.0 Kapton 1.84[5] 5.22 5.3[5] 1.51 38.00 36.3[5] 4.68
    140.0 Kapton 1.51[5] 4.09 4.0[5] 2.25 73.80 70.8[5] 4.24
    165.0 Kapton 1.53[5] 4.16 4.1[5] 1.46 86.70 83.1[5] 4.33
    254.0 Kapton 1.46[5] 3.90 3.8[5] 2.63 135.00 130.0[5] 3.85
    3.0 Al 3.66[4] 27.27 27.1[4] 0.63 1.61 1.6[4] 0.62
    3.5 Al 3.30[4] 23.25 23.1[4] 0.65 1.96 1.9[4] 3.16
    4.0 Al 3.16[4] 21.76 21.6[4] 0.74 2.28 2.2[4] 3.64
    4.5 Al 2.92[4] 19.29 19.1[4] 0.99 2.64 2.6[4] 1.54
    5.0 Al 2.77[4] 17.81 17.7[4] 0.62 2.99 2.9[4] 3.10
    25.0 Kapton 2.96[4] 11.12 11.1[4] 0.18 10.70 10.7[4] 0
    下载: 导出CSV

    表  3  铜叠氮化物爆炸驱动飞片起爆HNS-Ⅳ炸药的模拟结果

    Table  3.   Simulation results of initiating HNS-Ⅳ explosive by micro-charge detonation-driven flyer

    Explosive size/(mm×mm) vf/(km·s-1) p/GPa τ/ns u/(km·s-1) p2.08τ/(GPa2.08·μs) $ \frac{{0.1900}}{\mathit\Sigma } + \frac{{0.0954}}{E}$ Simulation results
    ∅0.8×0.3 2.29 15.70 4.381 1.68 1.35 0.960 Non-detonation
    ∅0.8×0.4 2.43 17.16 4.155 1.76 1.54 0.883 Non-detonation
    ∅0.8×0.5 2.62 19.23 3.881 1.88 1.82 0.787 Detonation
    ∅0.8×0.6 2.67 19.79 3.815 1.91 1.90 0.766 Detonation
    ∅0.8×0.7 2.82 21.50 3.628 2.00 2.14 0.707 Detonation
    ∅0.8×0.8 2.86 21.96 3.581 2.03 2.21 0.690 Detonation
    ∅0.4×0.5 2.45 17.38 2.062 1.78 0.78 1.620 Non-detonation
    ∅0.5×0.5 2.56 18.57 2.477 1.85 1.08 1.230 Non-detonation
    ∅0.6×0.5 2.58 18.79 2.952 1.86 1.32 1.030 Non-detonation
    ∅0.7×0.5 2.61 19.12 3.408 1.88 1.58 0.886 Detonation
    ∅0.9×0.5 2.61 19.12 4.381 1.88 2.03 0.713 Detonation
    ∅1.0×0.5 2.61 19.12 4.868 1.88 2.25 0.653 Detonation
    下载: 导出CSV
  • [1] JAMES H R.Critical energy criterion for the shock initiation of explosives by projectile impact[J].Propellants, Explosives, Pyrotechnics, 1988, 13(2):35-41. doi: 10.1002/(ISSN)1521-4087
    [2] JAMES H R.An extension to the critical energy criterion used to predict shock initiation thresholds[J].Propellants, Explosives, Pyrotechnics, 1996, 21(1):8-13. doi: 10.1002/(ISSN)1521-4087
    [3] HASKINS P J, COOK M D. A modified criterion for the prediction of shock initiation threshold for flyer plate and rod impacts[C]//14th International Detonation Symposium. Coeur d'Alene Resort, Idaho, 2010.
    [4] BOWDEN M, MAISEY M P, KNOWLES S. Shock initiation of hexanitrostilbene at ultra-high shock pressures and critical energy determination[C]//AIP Conference Proceedings. Maryland: AIP Publishing, 2012, 1426(1): 615-618.
    [5] SCHWARZ A C. Study of factors which influence the shock-initiation sensitivity of hexanitrostilbene (HNS): SAND-80-2372[R]. Albuquerque, NM: Sandia National Laboratory, 1981.
    [6] BOWDEN M D, MAISEY M P. Determination of critical energy criteria for hexanitrostilbene using laser-driven flyer plates[C]//Optical Engineering & Applications. International Society for Optics and Photonics, 2008: 707004.
    [7] WALKER F E, WASLEY R J.Critical energy for shock initiation of heterogeneous explosives[J].Explosive Stoffe, 1969, 17(1):9-14. http://www.worldcat.org/title/critical-energy-for-shock-initiation-of-heterogeneous-explosives/oclc/829388221
    [8] YADAV H S.Initiation of detonation in explosives by impact of projectiles[J].Defence Science Journal, 2006, 56(2):169-177. doi: 10.14429/dsj
    [9] 张宝坪, 张庆明, 黄风雷.爆轰物理学[M].北京:兵器工业出版社, 2006:241-244.
    [10] NEAL W, BOWDEN M. High fidelity studies of exploding foil initiator bridges, Part 2: Experimental results[C]//AIP Conference Proceedings. AIP Publishing, 2017, 1793(1): 030022.
    [11] TARVER C M, CHIDESTER S K. Ignition and growth modeling of short pulse shock initiation experiments on fine particle Hexanitrostilbene (HNS)[C]//Journal of Physics: Conference Series. Bristol: IOP Publishing, 2014, 500(5): 052044.
    [12] 郭俊峰, 曾庆轩, 李明愉, 等.叠氮化铜驱动飞片起爆HNS-Ⅳ的研究[J].火工品, 2015(6):1-4. http://www.cnki.com.cn/Article/CJFDTotal-HGPI201506001.htm

    GUO J F, ZENG Q X, LI M Y, et al.Study on HNS-Ⅳ initiated by flyer driven by cupric azide[J].Initiators & Pyrotechnics, 2015(6):1-4. http://www.cnki.com.cn/Article/CJFDTotal-HGPI201506001.htm
    [13] 郭俊峰, 曾庆轩, 李明愉, 等.飞片材料对微装药驱动飞片形貌的影响[J].高压物理学报, 2017, 31(3):315-320. doi: 10.11858/gywlxb.2017.03.014

    GUO J F, ZENG Q X, LI M Y, et al.Influence of flyer material on morphology of flyer driven by micro charge[J].Chinese Journal of High Pressure Physics, 2017, 31(3):315-320. doi: 10.11858/gywlxb.2017.03.014
    [14] ZENG Q X, LI B, LI M Y, et al.A miniature device for shock initiation of hexanitrostilbene by high-speed flyer[J].Propellants, Explosives, Pyrotechnics, 2016, 41(5):864-869. doi: 10.1002/prep.v41.5
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  7662
  • HTML全文浏览量:  3132
  • PDF下载量:  217
出版历程
  • 收稿日期:  2017-05-18
  • 修回日期:  2017-05-31

目录

    /

    返回文章
    返回