爆速对纳米铝粉爆炸烧结性能的影响

桑圣军 郭浩哲 李斌 王永旭 王志平 解立峰

桑圣军, 郭浩哲, 李斌, 王永旭, 王志平, 解立峰. 爆速对纳米铝粉爆炸烧结性能的影响[J]. 高压物理学报, 2018, 32(2): 023401. doi: 10.11858/gywlxb.20170581
引用本文: 桑圣军, 郭浩哲, 李斌, 王永旭, 王志平, 解立峰. 爆速对纳米铝粉爆炸烧结性能的影响[J]. 高压物理学报, 2018, 32(2): 023401. doi: 10.11858/gywlxb.20170581
SANG Shengjun, GUO Haozhe, LI Bin, WANG Yongxu, WANG Zhiping, XIE Lifeng. Influence of Detonation Velocity on Sintering Performance of Nano-Aluminum Powders[J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 023401. doi: 10.11858/gywlxb.20170581
Citation: SANG Shengjun, GUO Haozhe, LI Bin, WANG Yongxu, WANG Zhiping, XIE Lifeng. Influence of Detonation Velocity on Sintering Performance of Nano-Aluminum Powders[J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 023401. doi: 10.11858/gywlxb.20170581

爆速对纳米铝粉爆炸烧结性能的影响

doi: 10.11858/gywlxb.20170581
基金项目: 

国家国际科技合作专项项目 2013DFR0080

江苏省科技支撑计划项目 BE2014735

详细信息
    作者简介:

    桑圣军(1992—), 男, 硕士研究生, 主要从事工程力学研究.E-mail:ssjiphx@sina.cn

    通讯作者:

    解立峰(1965—), 男, 博士, 教授, 主要从事爆炸力学应用研究.E-mail:xielifeng319@sina.com

  • 中图分类号: O389;TG392

Influence of Detonation Velocity on Sintering Performance of Nano-Aluminum Powders

  • 摘要: 为了掌握纳米金属粉烧结成型技术, 将纳米铝粉置于改良设计的可泄压式爆炸烧结装置中, 得到了密实度达98%以上的纳米铝棒。通过改变铵梯炸药和木粉的比例调节炸药的爆速, 研究了不同爆速下烧结铝棒的性能。利用金相显微镜观察烧结棒的微观结构, 并对烧结棒的密实度、硬度等性能进行测量。结果表明:通过降低爆速可以减小马赫孔的产生, 但爆速过低, 会导致烧结棒的密实度和硬度等性能降低; 当采用爆速为2 158 m/s的炸药时, 可制得无马赫孔、高硬度、高密实度、晶粒细小的均质烧结棒。

     

  • 图  爆炸烧结装置

    Figure  1.  Device of explosive sintering

    图  纳米铝粉扫描电镜图

    Figure  2.  SEM image of nano aluminum powders

    图  爆轰烧结实验场地

    Figure  3.  Experiment field of explosive sintering

    图  爆炸烧结铝棒初成品

    Figure  4.  Initial aluminium bar of explosive sintering

    图  金相显微图

    Figure  5.  Metallographic micrograph

    图  维氏硬度测量

    Figure  6.  Measurements of Vickers hardness

    表  1  爆速测试实验结果

    Table  1.   Experiment results of the detonation velocity

    No. L/mm d/mm w/% D′/(m·s-1)
    1 200 20 0 3 015
    2 200 20 5.0 2 460
    3 200 20 7.5 2 278
    4 200 20 10.0 2 158
    5 200 20 12.5 2 016
    6 200 20 15.0 1 832
    下载: 导出CSV

    表  2  不同爆速下爆炸烧结铝棒的密度和密实度

    Table  2.   Density and dense degree of sintered aluminum bar with different explosive velocities

    w/% D′/(m·s-1) ρ/(g·cm-3) Dense degree/%
    7.5 2 278 2.671 98.9
    10.0 2 158 2.692 99.7
    12.5 2 016 2.652 98.2
    下载: 导出CSV
  • [1] 张中太, 林元华, 唐子龙, 等.纳米材料及其技术的应用前景[J].材料工程, 2000(3):42-48. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=clgc200003012

    ZHANG Z T, LIN Y H, TANG Z L, et al.Nanometer materials & nano technology and their application prospect[J].Journal of Materials Engineering, 2003(3):42-48. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=clgc200003012
    [2] 陈海英, 冯凤, 张飞, 等.铜纳米材料的制备、应用及安全性研究进展[J].化工新型材料, 2016(10):11-13.

    CHEN H Y, FENG F, ZHANG F, et al.Preparation, application, and safety of copper nanoparticle[J].New Chemical Materials, 2016(10):11-13.
    [3] 李晓杰, 赵铮, 曲艳东, 等.爆炸烧结制备CuCr合金[J].爆炸与冲击, 2005, 25(3):251-254. doi: 10.11883/1001-1455(2005)03-0251-04

    LI X J, ZHAO Z, QU Y D, et al.Producing CuCr alloy by explosive sintering[J].Explosion and Shock Waves, 2005, 25(3):251-254. doi: 10.11883/1001-1455(2005)03-0251-04
    [4] HOKAMOTO K, SHIMOMIYA K, NISHI M, et al.Synthesis of unidirectional porous-structured aluminum through explosive compaction using cylindrical geometry[J].Journal of the Japan Society for Technology Plasticity, 2017, 673(58):156-160. https://www.jstage.jst.go.jp/article/sosei/58/673/58_156/_article
    [5] VOROZHTSOV S, VOROZHTSOV A, KUDRYASHOVA O, et al.Structural and mechanical properties of aluminium-based composites processed by explosive compaction[J].Powder Technology, 2017, 313(15):251-259. https://www.sciencedirect.com/science/article/pii/S0032591017302334
    [6] 李晓杰, 王金相, 闫鸿浩.爆炸粉末烧结机理的研究现状及其发展趋势[J].稀有金属材料与工程, 2004, 33(6):566-570. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xyjsclygc200406002

    LI X J, WANG J X, YAN H H.The survey and development trend of the research for the mechanism of explosive consolidation of powders[J].Rare Metal Materials and Engineering, 2004, 33(6):566-570. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xyjsclygc200406002
    [7] 刘麒峰, 赵捍东, 王金虎.W-Cu复合药型罩EFP的形成及其聚能破甲效应研究[J].兵器材料科学与工程, 2015, 38(6):102-105. http://www.cqvip.com/QK/95120X/201506/666607280.html

    LIU Q F, ZHAO H D, WANG J H.EFP formation of W-Cu double layered charge liners and its peed penetration effect[J].Ordnance Material Science and Engineering, 2015, 38(6):102-105. http://www.cqvip.com/QK/95120X/201506/666607280.html
    [8] VESENJAK M, HOKAMOTO K, MATSUMOTO S, et al.Uni-directional porous metal fabricated by rolling of copper sheet and explosive compaction[J].Materials Letters, 2016, 170(1):39-43. https://www.sciencedirect.com/science/article/pii/S0167577X1630146X
    [9] ZELEPUGIN S A, IVANOVA O V, YUNOSHEV A S, et al.Problems of solid-phase synthesis in cylindrical ampoules under explosive loading[J].IOP Conference Series:Materials Science and Engineering, 2016, 127(1):012057. doi: 10.1088/1757-899X/127/1/012057
    [10] 王占磊, 王慧萍, 王岭渠, 等.爆炸压实W-Cu粉末的数值模拟与实验验证[J].稀有金属材料与工程, 2014, 43(8):1997-2001.

    WANG Z L, WANG H P, WANG L Q, et al.Numerical simulation of explosive compaction of W-Cu powder and experiment validation[J].Rare Metal Materials and Engineering, 2014, 43(8):1997-2001.
    [11] 孟松鹤, 李金平, 韩杰才.粉末的爆炸压实工艺[J].材料科学与工艺, 2006, 14(4):404-407. http://www.cqvip.com/QK/91902A/200604/22690014.html

    MENG S H, LI J P, HAN J C.Explosive compaction of powders[J].Materials Science and Technology, 2006, 14(4):404-407. http://www.cqvip.com/QK/91902A/200604/22690014.html
    [12] 陈代贵, 王成合.木粉、硝铵的水分、细度对铵梯炸药的殉爆和爆速的影响[J].宝鼎科技, 2003(3):22-23.

    CHEN D G, WANG C H.The effection of wood powder, moisture of ammonium nitrate and fineness to the sympathetic detonation and detonation velocity of the ammonium nitrate explosive[J].BAODING Technology, 2003(3):22-23.
    [13] 李晓杰, 王金相, 陈浩然, 等.金属粉末爆炸烧结颗粒间结合细观机制研究[J].应用基础与工程科学学报, 2005, 13(1):58-66. http://www.cqvip.com/QK/84465X/200501/15480010.html

    LI X J, WANG J X, CHEN H R, et al.Research of microcosmic bonding mechanism of particles in explosive consolidation of metal powders[J].Journal of Basic Science and Engineering, 2005, 13(1):58-66. http://www.cqvip.com/QK/84465X/200501/15480010.html
    [14] 李维新.一维不定常流与冲击波[M].北京:国防工业出版社, 2003:250-300.

    LI W X.One-dimensional nonsteady flow and shock waves[M].Beijing:National Defend Industry Press, 2003:250-300.
    [15] 王占磊. 爆炸压实W-Cu纳米合金及其聚能破甲应用研究[D]. 大连: 大连理工大学, 2012: 38-42.

    WANG Z L. Research on explosive of W-Cu nanoalloy and the application to shaped charge liner[D]. Dalian: Dalian University of Technology, 2012: 38-42.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  7264
  • HTML全文浏览量:  3282
  • PDF下载量:  217
出版历程
  • 收稿日期:  2017-05-15
  • 修回日期:  2017-05-21

目录

    /

    返回文章
    返回