亚微米级聚晶金刚石的高温高压合成

卢景瑞 寇自力 刘腾 张雷雷 丁未 张强 王强 杨鸣 龚红霞 贺端威

卢景瑞, 寇自力, 刘腾, 张雷雷, 丁未, 张强, 王强, 杨鸣, 龚红霞, 贺端威. 亚微米级聚晶金刚石的高温高压合成[J]. 高压物理学报, 2018, 32(2): 023302. doi: 10.11858/gywlxb.20170574
引用本文: 卢景瑞, 寇自力, 刘腾, 张雷雷, 丁未, 张强, 王强, 杨鸣, 龚红霞, 贺端威. 亚微米级聚晶金刚石的高温高压合成[J]. 高压物理学报, 2018, 32(2): 023302. doi: 10.11858/gywlxb.20170574
LU Jingrui, KOU Zili, LIU Teng, ZHANG Leilei, DING Wei, ZHANG Qiang, WANG Qiang, YANG Ming, GONG Hongxia, HE Duanwei. Sub-Micron Polycrystalline Diamond Synthesis under High Temperature and High Pressure[J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 023302. doi: 10.11858/gywlxb.20170574
Citation: LU Jingrui, KOU Zili, LIU Teng, ZHANG Leilei, DING Wei, ZHANG Qiang, WANG Qiang, YANG Ming, GONG Hongxia, HE Duanwei. Sub-Micron Polycrystalline Diamond Synthesis under High Temperature and High Pressure[J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 023302. doi: 10.11858/gywlxb.20170574

亚微米级聚晶金刚石的高温高压合成

doi: 10.11858/gywlxb.20170574
基金项目: 

国家自然科学基金 11372143

详细信息
    作者简介:

    卢景瑞(1988—), 男,硕士研究生,主要从事高温高压下超硬材料的合成与物性研究. E-mail:lujingrui1988@163.com

    通讯作者:

    寇自力(1962—), 男,研究员,硕士生导师,主要从事高压下新材料的合成和新型超硬材料研究. E-mail:kouzili@scu.edu.cn

Sub-Micron Polycrystalline Diamond Synthesis under High Temperature and High Pressure

  • 摘要: 聚晶金刚石作为超硬材料具有很广泛的应用,常用于油气钻探、切削刀具、耐磨零件等领域。目前,工业上合成聚晶金刚石的内部晶粒尺寸一般都在微米量级以上,而合成微米级以下的聚晶金刚石则要面临很多困难。本工作使用熔渗法在高温高压的条件下合成了亚微米级聚晶金刚石,并对合成的样品进行了X射线衍射、扫描电子显微镜、电子背散射衍射、能谱、硬度等分析测试,结果表明:在5.5GPa、1500℃、保温15min的情况下成功合成了维氏硬度高达57.0GPa的亚微米级聚晶金刚石;分层组装的方法可以使Co均匀地分散在聚晶金刚石样品中,呈现出圆孔状,从而保证样品具备均匀、优异的性能。同时,通过对烧结工艺的探索发现,温度和保温时间在亚微米级聚晶金刚石的合成过程中起着非常重要的作用。

     

  • 图  初始粉末的XRD图

    Figure  1.  XRD pattern of starting material

    图  初始粉末的SEM图

    ((a)0.5μm金刚石粉, (b)10μm金刚石粉)

    Figure  2.  SEM image of starting material

    ((a)0.5μm diamond powder, (b)10μm diamond powder)

    图  实验分层组装

    Figure  3.  Bi-layered assembly of experiment

    图  实验温压条件曲线

    Figure  4.  Temperature and pressure condition

    图  不同温度下合成PCD样品的维氏硬度

    Figure  5.  Vickers hardness of sintered PCD samples at different temperatures

    图  5.5GPa、1500℃下合成PCD样品的XRD图谱

    Figure  6.  XRD spectrum of sintered PCD at 5.5GPa and 1500℃

    图  合成PCD样品断面图

    Figure  7.  Fracture surface of the sintered PCD sample

    图  5.5GPa、1500℃下合成亚微米PCD样品经过酸处理后的SEM图

    Figure  8.  SEM image of sub-micron PCD sample sintered at 5.5GPa and 1500℃ after acid treatment

    图  5.5GPa、1500℃下合成亚微米PCD样品的EBSD图

    Figure  9.  EBSD image of sub-micron PCD sample sintered at 5.5GPa and 1500℃

    图  10  5.5GPa、1500℃下合成亚微米PCD样品EDS图

    Figure  10.  EDS image of sub-micron PCD sample sintered at 5.5GPa and 1500℃

    表  1  合成PCD样品的维氏硬度

    Table  1.   Vickers hardness of PCD samples

    T/℃ t/min Hv/GPa
    p=5.0GPa p=5.5GPa
    1300 5 15-22 15-22
    15 15-22 15-22
    1400 5 53.03 32.14
    15 47.08 50.33
    1450 5 19.22 18.36
    15 30.84 52.56
    1500 5 21.22 42.97
    15 39.95 57.03
    1550 5 23.40 39.14
    15 48.40 43.97
    下载: 导出CSV

    表  2  5.5GPa、1500℃合成的亚微米PCD样品中各元素的含量

    Table  2.   Element content of sub-micron PCD sample at 5.5GPa and 1500℃

    Element w/% χ/%
    C (K) 77.70 92.80
    O (K) 3.69 3.31
    Co (K) 13.84 3.37
    Mo (L) 2.08 0.31
    W (M) 2.69 0.21
    下载: 导出CSV
  • [1] KANER R B, GILMAN J J, TOLBERT S H.Designing superhard materials[J]. Science, 2005, 308(5726):1268-1269. doi: 10.1126/science.1109830
    [2] HUANG Q, YU D L, XU B, et al.Nanotwinned diamond with unprecedented hardness and stability[J]. Nature, 2014, 510(7504):250. doi: 10.1038/nature13381
    [3] ZHAO Y, HE D W, DAEMEN L L, et al.Superhard B-C-N materials synthesized in nanostructured bulks[J]. Journal of Materials Research, 2002, 17(12):3139-3145. doi: 10.1557/JMR.2002.0454
    [4] IRIFUNE T, KURIO A, SAKAMOTO S, et al.Materials:ultrahard polycrystalline diamond from graphite[J]. Nature, 2003, 421(6923):599-600.
    [5] CHUNG H Y, WEINBERGER M B, LEVINE J B, et al.Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure[J]. Science, 2007, 316(5823):436-439. doi: 10.1126/science.1139322
    [6] DUBROVINSKAIA N, SOLOZHENKO V L, MIYAJIMA N, et al.Superhard nanocomposite of dense polymorphs of boron nitride:noncarbon material has reached diamond hardness[J]. Applied Physics Letters, 2007, 90(10):101912. doi: 10.1063/1.2711277
    [7] QIN J Q, HE D W, WANG J H, et al.Is rhenium diboride a superhard material?[J]. Advanced Materials, 2010, 20(24):4780-4783.
    [8] TIAN Y J, XU B, YU D L, et al.Ultrahard nanotwinned cubic boron nitride[J]. Nature, 2013, 493(7432):385-388. doi: 10.1038/nature11728
    [9] TANG H, WANG M Z, HE D W, et al.Synthesis of nano-polycrystalline diamond in proximity to industrial conditions[J]. Carbon, 2016, 108:1-6. doi: 10.1016/j.carbon.2016.07.004
    [10] BUNDY F P, HALL H T, STRONG H M, et al.Man-made diamonds[J]. Nature, 1955, 176(4471):51-55. doi: 10.1038/176051a0
    [11] SKURY A L D, BOBROVNITCHⅡ G S, MONTEIRO S N.The graphitization process and the synthesis of diamonds from a C-Ni-Mn system[J]. Carbon, 2004, 42(12/13):2369-2373.
    [12] HONG S M, AKAISHI M, KANDA H, et al.Dissolution behaviour of fine particles of diamond under high pressure sintering conditions[J]. Journal of Materials Science Letters, 1991, 10(3):164-166. doi: 10.1007/BF02352837
    [13] YAO B, WANG A M, DING B Z, et al.Study on structure of a new binding phase in polycrystalline diamond[J]. Journal of Materials Science Letters, 1995, 14(13):931-933. doi: 10.1007/BF02427468
    [14] HONG S M, AKAISHI M, KANDA H, et al.Behaviour of cobalt infiltration and abnormal grain growth during sintering of diamond on cobalt substrate[J]. Journal of Materials Science, 1988, 23(11):3821-3826. doi: 10.1007/BF01106798
    [15] HALL H T.Sintered diamond:a synthetic carbonado[J]. Science, 1970, 169(3948):868-869. doi: 10.1126/science.169.3948.868
    [16] KATZMAN H, LIBBY W F.Sintered diamond compacts with a cobalt binder[J]. Science, 1971, 172(3988):1132-1134. doi: 10.1126/science.172.3988.1132
    [17] WILKS J, WILKS E.Properties and applications of diamond[M]. Oxford:Butterworth-Heinemann, 1991.
    [18] AKAISHI M, OHSAWA T, YAMAOKA S.Synthesis of fine-grained polycrystalline diamond compact and its microstructure[J]. Journal of the American Ceramic Society, 1991, 74(1):5-10. doi: 10.1111/jace.1991.74.issue-1
    [19] BOVENKERK H P, KIBLER G M. Diamond and cubic boron nitride abrasive compacts using size selective abrasive particle layers: US 4311490 A[P]. 1982-01-19.
    [20] ZHANG Y, KOU Z, LI Y, et al.High pressure and high temperature sintering of fine-grained PCD using bi-layered assembly[J]. High Pressure Research, 2009, 29(2):325-334. doi: 10.1080/08957950802593774
    [21] XU C, HE D W, WANG H K, et al.Nano-polycrystalline diamond formation under ultra-high pressure[J]. International Journal of Refractory Metals & Hard Materials, 2013, 36(1):232-237. https://www.sciencedirect.com/science/article/pii/S0263436812001710
    [22] 洪时明, 罗湘捷, 陈叔鑫, 等.D─D结合型金刚石聚晶的高压合成研究[J].高压物理学报, 1990, 4(2):105-113. http://www.gywlxb.cn/CN/abstract/abstract1228.shtml

    HONG S M, LUO X J, CHEN S X, et al.Experimental on sintering diamond with direct bonding between diamond particles[J]. Chinese Journal of High Pressure Physics, 1990, 4(2):105-113. http://www.gywlxb.cn/CN/abstract/abstract1228.shtml
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  7631
  • HTML全文浏览量:  3013
  • PDF下载量:  323
出版历程
  • 收稿日期:  2017-05-03
  • 修回日期:  2017-05-09

目录

    /

    返回文章
    返回