高硬度超导三元碳化物的高温高压合成

郜浩安 马帅领 包括 朱品文 崔田

郜浩安, 马帅领, 包括, 朱品文, 崔田. 高硬度超导三元碳化物的高温高压合成[J]. 高压物理学报, 2018, 32(2): 023301. doi: 10.11858/gywlxb.20170633
引用本文: 郜浩安, 马帅领, 包括, 朱品文, 崔田. 高硬度超导三元碳化物的高温高压合成[J]. 高压物理学报, 2018, 32(2): 023301. doi: 10.11858/gywlxb.20170633
GAO Hao'an, MA Shuailing, BAO Kuo, ZHU Pinwen, CUI Tian. Synthesis of Hard Superconductive Ternary Transition Metal Carbide under High Pressure and High Temperature[J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 023301. doi: 10.11858/gywlxb.20170633
Citation: GAO Hao'an, MA Shuailing, BAO Kuo, ZHU Pinwen, CUI Tian. Synthesis of Hard Superconductive Ternary Transition Metal Carbide under High Pressure and High Temperature[J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 023301. doi: 10.11858/gywlxb.20170633

高硬度超导三元碳化物的高温高压合成

doi: 10.11858/gywlxb.20170633
基金项目: 

国家自然科学基金 51632002

国家自然科学基金 11674122

国家自然科学基金 51572108

国家自然科学基金 11204100

国家自然科学基金 11504127

国家自然科学基金 11634004

国家自然科学基金 11714121

教育部长江学者和创新团队发展计划 IRT_15R23

中学生科技创新后备人才培养计划(“英才计划”) 

详细信息
    作者简介:

    郜浩安(2000—), 男,中国科协和教育部中学生科技创新后备人才培养计划学员,主要从事凝聚态物理与材料科学研究.E-mail:3268007866@qq.com

    通讯作者:

    包括(1978—), 男,博士,教授,主要从事新型高硬度多功能材料的设计与合成、高压下强关联体系研究.E-mail:baokuo@jlu.edu.cn

  • 中图分类号: O521.2

Synthesis of Hard Superconductive Ternary Transition Metal Carbide under High Pressure and High Temperature

  • 摘要: 采用高温高压合成手段,以纯度均在99.8%以上的钼粉、钨粉和石墨粉作为合成原料,在压强5.0GPa、温度2000K、保温时间60min的条件下成功制备出MoWC2样品。利用X射线衍射仪、扫描电子显微镜、透射电子显微镜、显微硬度仪、综合物性测量系统和热重-差热分析仪对合成样品进行了物性表征。结果表明:合成的MoWC2晶体为六角结构,其空间群为P6-m2;晶粒大小为1~4μm,结晶质量良好;MoWC2的收敛硬度值为15.3GPa;氧化温度为450℃;温度低于6.8K时体现超导电性。MoWC2的轨道杂化很强,因而具有较高的硬度和抗氧化性。同时,MoWC2费米面处态密度和德拜温度较高,使其成为一种超导材料。由此可知,MoWC2是一种兼具超导性、耐热性和较高硬度的硬质超导多功能材料。

     

  • 图  高压合成实验的样品组装示意图

    Figure  1.  Sample assembly for high pressure synthesis experiment

    图  MoWC2的XRD谱

    Figure  2.  XRD Spectrum of the MoWC2 sample

    图  MoWC2的结构示意图

    Figure  3.  Structural representation of MoWC2

    图  合成MoWC2样品的SEM、SAED和TEM图像

    Figure  4.  SEM, SAED and TEM images of MoWC2 sample

    图  4.9N载荷下MoWC2样品压痕的光学显微照片

    Figure  5.  Optical micrograph of MoWC2 sample's indentation under load of 4.9N

    图  MoWC2热重-差热分析

    Figure  6.  TG and DTA analysis of synthesized MoWC2 sample

    图  MoWC2的磁化率与温度的关系曲线

    Figure  7.  Relationship of magnetic susceptibility of MoWC2 sample and temperature

  • [1] 包括, 马帅领, 徐春红, 等.过渡金属轻元素化合物高硬度多功能材料的设计[J].物理学报, 2017, 66(3):036104.

    BAO K, MA S L, XU C H, et al.Design of ultra-hard multifunctional transition metal compounds[J]. Acta Physica Sinica, 2017, 66(3):036104.
    [2] 陶强. MoB2和WB3的高温高压合成及其结构和硬度性质研究[D]. 长春: 吉林大学, 2015: 27-40, 61-63.

    TAO Q. Exploring the structures and hardness of MoB2 and WB3 synthesized by high pressure and high temperature[D]. Changchun: Jilin University, 2015: 27-40, 61-63.
    [3] QI Q, LIU Y, WANG L J, et al.One new route to optimize the oxidation resistance of TiC/hastelloy (Ni-based alloy) composites applied for intermediate temperature solid oxide fuel cell interconnect by increasing graphite particle size[J]. Journal of Power Sources, 2017, 362:57-63. doi: 10.1016/j.jpowsour.2017.06.085
    [4] MA T, LI H, ZHENG X, et al.Ultrastrong boron frameworks in ZrB12:a highway for electron conducting[J]. Advanced Materials, 2017, 29(3):1-6. https://www.researchgate.net/publication/320956356_Zirconium_Boride_as_a_High_Fluence_Saturable_Absorber_for_Q-Switched_Fiber_Lasers
    [5] ZHANG G T, GAO R, ZHAO Y R, et al.First-principles investigation on crystal structure and physical properties of HfB4[J]. Journal of Alloys & Compounds, 2017, 723:802-810.
    [6] KAYHAN M, HILDEBRT E, FROTSCHER M, et al.Neutron diffraction and observation of superconductivity for tungsten borides, WB and W2B4[J]. Solid State Sciences, 2012, 14(11/12):1656-1659.
    [7] GASPAROV V, SHEIKIN I, OTANI S.Electron transport and superconducting properties of ZrB12, and YB6[J]. Physica C:Superconductivity & Its Applications, 2007, 460:623-625.
    [8] KAVITHA M, PRIYANGA G S, RAJESWARAPALANICHAMY R, et al.Structural stability, electronic, mechanical and superconducting properties of CrC and MoC[J]. Materials Chemistry & Physics, 2016, 169:71-81. https://www.sciencedirect.com/science/article/pii/S0254058415304582
    [9] HWANG T J, KIM D H.Variation of superconducting transition temperature by proximity effect in NbN/FeN bilayers[J]. Physica C:Superconductivity & Its Applications, 2017, 540(15):16-19. https://www.sciencedirect.com/science/article/pii/S0921453417301260
    [10] BOI F S, GUO J, XIANG G, et al.Cm-size free-standing self-organized buckypaper of bucky-onions filled with ferromagnetic Fe3C[J]. RSC Advances, 2017, 7(2):845-850. doi: 10.1039/C6RA24983C
    [11] MA S L, BAO K, TAO Q, et al.Manganese mono-boride, an inexpensive room temperature ferromagnetic hard material[J]. Scientific Reports, 2017, 7:43759. doi: 10.1038/srep43759
    [12] ZHDANOVA O V, LYAKHOVA M B, PASTUSHENKOV Y G.Magnetic properties and domain structure of FeB single crystals[J]. Metal Science & Heat Treatment, 2013, 55(1/2):68-72. doi: 10.1007/s11041-013-9581-0.pdf
    [13] VAARMETS K, NERUT J, SEPP S, et al.Accelerated durability tests of molybdenum carbide derived carbon based Pt catalysts for PEMFC[J]. Journal of the Electrochemical Society, 2017, 164(4):338-346. doi: 10.1149/2.1021704jes
    [14] XU Y T, XIAO X, YE Z M, et al.Cage-confinement pyrolysis route to ultrasmall tungsten carbide nanoparticles for efficient electrocatalytic hydrogen evolution[J]. Journal of the American Chemical Society, 2017, 139(15):5285. doi: 10.1021/jacs.7b00165
    [15] MAKOTA O, WOLF J, TRACH Y, et al.Epoxidation of cyclooctene with hydroperoxy sultams catalyzed by molybdenum boride[J]. Applied Catalysis A:General, 2007, 323(5):174-180. https://www.sciencedirect.com/science/article/pii/S0926860X0700097X
    [16] SIMONENKO E P, IGNATOV N A, SIMONENKO N P, et al.Synthesis of highly dispersed super-refractory tantalum-zirconium carbide Ta4ZrC5, and tantalum-hafnium carbide Ta4HfC5, via sol-gel technology[J]. Russian Journal of Inorganic Chemistry, 2011, 56(11):1681-1687. doi: 10.1134/S0036023611110258
    [17] SCANLON M D, BIAN X, VRUBEL H, et al.Low-cost industrially available molybdenum boride and carbide as "platinum-like" catalysts for the hydrogen evolution reaction in biphasic liquid systems[J]. Physical Chemistry Chemical Physics, 2013, 15(8):2847-2857. doi: 10.1039/c2cp44522k
    [18] HUNT S T, NIMMANWUDIPONG T, ROMAN-LESHKOV Y.Engineering non-sintered, metal-terminated tungsten carbide nanoparticles for catalysis[J]. Angewandte Chemie, 2014, 53(20):5131-5136.
    [19] MOHAMMADI R, TURNER C L, XIE M, et al.Enhancing the hardness of superhard transition-metal borides: molybdenum-doped tungsten tetraboride[J]. Chemistry of Materials, 2016, 28(2):632-637. doi: 10.1021/acs.chemmater.5b04410
    [20] YEUNG M T, LEI J, MOHAMMADI R, et al.Superhard monoborides:hardness enhancement through alloying in W1-x TaxB[J]. Advanced Materials, 2016, 28(32):6993-6998. doi: 10.1002/adma.201601187
    [21] EMAMIAN A, FARSHIDIANFAR M H, KHAJEPOUR A.Thermal monitoring of microstructure and carbide morphology in direct metal deposition of Fe-Ti-C metal matrix composites[J]. Journal of Alloys & Compounds, 2017, 710:20-28. https://www.sciencedirect.com/science/article/pii/S0925838817309994
    [22] HU Y F, JIA G, MA S L, et al.Hydrogen evolution reaction of γ-Mo0.5W0.5C achieved by high pressure high temperature synthesis[J]. Catalysts, 2016, 6(12):208-215. doi: 10.3390/catal6120208
    [23] 崔田, 冯小康, 朱品文, 等. 氮化铬的高温高压制备方法: CN 106517111A[P]. 2017-03-22.

    CUI T, FENG X K, ZHU P W, et al. Preparation of chromium nitride at high temperature and high pressure: CN 106517111A[P]. 2017-03-22.
    [24] KURLOV A S, GUSEV A I.Density and particle size of cubic niobium carbide NbCy, nanocrystalline powders[J]. Physics of the Solid State, 2017, 59(1):184-190. doi: 10.1134/S106378341701019X
    [25] MA S L, BAO K, TAO Q, et al.An ultra-incompressible ternary transition metal carbide[J]. RSC Advances, 2014, 4(108):63544-63548. doi: 10.1039/C4RA13193B
    [26] KUMAR P, SINGH M, SHARMA R K, et al. Effect of plasma voltage on sulfurization of α-MoO3 nanostructured thin films[C]//International Conference on Condensed Matter & Applied Physics. AIP Publishing, 2016: 2320-2325.
    [27] YANG Y A, MA Y, YAO J N, et al.Simulation of the sublimation process in the preparation of photochromic WO3, film by laser microprobe mass spectrometry[J]. Journal of Non-Crystalline Solids, 2000, 272(1):71-74. doi: 10.1016/S0022-3093(00)00226-X
    [28] 李峰.日本研制出新型超导材科——含硼金刚石薄膜[J].功能材料信息, 2004, 1(3):61. https://www.doc88.com/p-5425090739892.html

    LI F.Japan developed a new superconducting materials-boron-containing diamond film[J]. Functional Materials Information, 2004, 1(3):61. https://www.doc88.com/p-5425090739892.html
    [29] SHAKHOV F M, ABYZOV A M, KIDALOV S V, et al.Boron-doped diamond synthesized at high-pressure and high-temperature with metal catalyst[J]. Journal of Physics & Chemistry of Solids, 2016, 103:224-237. https://www.sciencedirect.com/science/article/pii/S0022369716308216
    [30] GOU H, DUBROVINSKAIA N, BYKOVA E, et al.Discovery of a superhard iron tetraboride superconductor[J]. Physical Review Letters, 2013, 111(15):157002. doi: 10.1103/PhysRevLett.111.157002
    [31] WANG S, ANTONIO D, YU X, et al.The hardest superconducting metal nitride[J]. Scientific Reports, 2015, 5:13733. doi: 10.1038/srep13733
    [32] PADUANI C.Electronic structure and Fermi surfaces of transition metal carbides with rocksalt structure[J]. Journal of Physics:Condensed Matter, 2008, 20(22):225014. doi: 10.1088/0953-8984/20/22/225014
  • 加载中
图(7)
计量
  • 文章访问数:  7607
  • HTML全文浏览量:  3165
  • PDF下载量:  258
出版历程
  • 收稿日期:  2017-08-21
  • 修回日期:  2017-09-03

目录

    /

    返回文章
    返回