Crystal Structure and Stability of LiAlH4 from First Principles

ZHANG Yilong CUI Man'ai LIU Yanhui

张艺龙, 崔慢爱, 刘艳辉. LiAlH4晶体结构及稳定性的第一性原理研究[J]. 高压物理学报, 2018, 32(2): 021103. doi: 10.11858/gywlxb.20170561
引用本文: 张艺龙, 崔慢爱, 刘艳辉. LiAlH4晶体结构及稳定性的第一性原理研究[J]. 高压物理学报, 2018, 32(2): 021103. doi: 10.11858/gywlxb.20170561
ZHANG Yilong, CUI Man'ai, LIU Yanhui. Crystal Structure and Stability of LiAlH4 from First Principles[J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 021103. doi: 10.11858/gywlxb.20170561
Citation: ZHANG Yilong, CUI Man'ai, LIU Yanhui. Crystal Structure and Stability of LiAlH4 from First Principles[J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 021103. doi: 10.11858/gywlxb.20170561

Crystal Structure and Stability of LiAlH4 from First Principles

doi: 10.11858/gywlxb.20170561
Funds: 

National Natural Science Foundation of China 11764043

More Information
    Author Bio:

    ZHANG Yilong(1998—), male, undergraduate, major in computational physics under high pressure.E-mail:122696148@qq.com

    Corresponding authors: CUI Man'ai(1979—), female, master, lecturer, major in computational physics under high pressure.E-mail:macui@ybu.edu.cn LIU Yanhui(1971—), female, Ph.D, professor, major in computational physics under high pressure.E-mail:yhliu@ybu.edu.cn
  • 摘要: 基于密度泛函理论的第一性原理赝势平面波方法,研究高压下三元碱金属氢化物LiAlH4的相变行为,分析了LiAlH4高压相变的物理机制。研究表明,在1.6 GPa时LiAlH4发生了相变,从α-LiAlH4转变为空间群为I2/bβ-LiAlH4,相变时伴随18%的体积坍塌,即一级相变。通过分析声子色散曲线得出,相变与声子软化有关。Millikan布局分析表明,常压相(α-LiAlH4)是很有潜力的储氢材料。

     

  • Figure  1.  Volume vs. pressure curves of α-LiAlH4 and β-LiAlH4 phases (Enthalpy difference (per formula unit) between α-LiAlH4 and β-LiAlH4 as a function of pressure is shown in the insert.)

    Figure  2.  Phonon dispersion relations and density of state in high-symmetry directions for the α-LiAlH4 structure at 0 and 1.6 GPa

    Figure  3.  Calculated total and partial electronic densities of states for α-LiAlH4 structure at 0 GPa (a) and β-LiAlH4 structure at 1.6 GPa (b) respectively

    Table  1.   Optimized structural parameters, atomic position parameters for the α-LiAlH4 and the β-LiAlH4 structures

    Phase Unit-cell dimensions Atom coordinates
    α-LiAlH4
    (P21/c)
    a=0.485 1 nm(0.481 7 nm*)
    b=0.781 4 nm(0.780 2 nm*)
    c=0.773 2 nm(0.782 1 nm*)
    Li:(0.585, 0.459, 0.829), (0.560, 0.466, 0.827)*
    Al:(0.159, 0.204, 0.938), (0.139, 0.203, 0.930)*
    H1:(0.193, 0.102, 0.766), (0.183, 0.096, 0.763)*
    H2:(0.377, 0.371, 0.986), (0.352, 0.371, 0.975)*
    H3:(0.254, 0.082, 0.119), (0.243, 0.081, 0.115)*
    H4:(0.822, 0.268, 0.882), (0.799, 0.247, 0.872)*
    β-LiAlH4
    (I2/b)
    a=0.445 2 nm
    b=0.445 9 nm
    c=1.010 2 nm
    β=89.978°
    Li:(0, 0.250, 0.125)
    Al:(0, 0.250, 0.625)
    H1:(0.259, 0.425, 0.542)
    H2:(0.324, 0.508, 0.792)
    Note:"*" represents experimental data from Ref.[18].
    下载: 导出CSV

    Table  2.   Average net charges, bond length (L) and scaled bond overlap population (Ps) between H, Al, and Li atoms in the α-LiAlH4 (at 0 GPa) and the β-LiAlH4 (at 2.0 GPa) structures

    Phase Average net charge L/nm Ps
    H Al Li Al─H Li─H Al─H Li─H
    α-LiAlH4 -0.48 0.64 1.29 0.161 5 0.188 6 0.506 0.019
    β-LiAlH4 -0.46 0.55 1.28 0.162 8 0.206 7 0.534 -0.063
    下载: 导出CSV
  • [1] SCHLAPBACH L, ZÜTTEL A.Hydrogen-storage materials for mobile applications[J]. Nature, 2001, 414(6861):353-358. doi: 10.1038/35104634
    [2] SCHÜTH F, BOGDANOVIC' B, FELDERHOFF M.Light metal hydrides and complex hydrides for hydrogen storage[J]. Chemical Communications, 2005, 36(2):2249-2258.
    [3] ZHU C Y, LIU Y H, DUAN D F.Structural transitions of NaAlH4 under high pressure by first-principles calculations[J]. Physica B:Condensed Matter, 2011, 406(8):1612-1614. doi: 10.1016/j.physb.2011.02.007
    [4] DILTS J A, ASHBY E C.Thermal decomposition of complex metal hydrides[J]. Inorganic Chemistry, 1972, 11(6):1230-1236. doi: 10.1021/ic50112a015
    [5] DYMOVA T N, ALEKSANDROV D P, KONOPLEV V N, et al.Spontaneous and thermal-decomposition of Lithium Tetrahydroaluminate LiAlH4-the promoting effect of mechanochemical action on the process[J]. Russian Journal of Coordination Chemistry, 1994, 20(4):279-285. http://www.academia.edu/13646109/Hydrogen_production_from_solid_reactions_between_MAlH4_and_NH4Cl
    [6] VAJEESTON P, RAVINDRAN P, VIDYA R, et al.Huge-pressure-induced volume collapse in LiAlH4 and its implications to hydrogen storage[J]. Physical Review B, 2003, 68:212101. doi: 10.1103/PhysRevB.68.212101
    [7] PITT M P, BLANCHARD D, HAUBACK B C, et al.Pressure-induced phase transitions of the LiAlD4 system[J]. Physical Review B, 2005, 72:214113. doi: 10.1103/PhysRevB.72.214113
    [8] CHELLAPPA R S, CHANDRA D, GRAMSCH S A, et al.Pressure-induced phase transformations in LiAlH4[J]. The Journal of Physical Chemistry B, 2006, 110(23):11088-11097. doi: 10.1021/jp060473d
    [9] TALYZIN A V, SUNDQVIST B.Reversible phase transition in LiAlH4 under high-pressure conditions[J]. Physical Review B, 2004, 70:180101. doi: 10.1103/PhysRevB.70.180101
    [10] HOHENBERG P, KOHN W.Inhomogeneous electron gas[J]. Physical Review B, 1964, 136(3):864-871.
    [11] KOHN W, SHAM L.Self-consistent equations including exchange and correlation effects[J]. Physical Review A, 1965, 140(4):1133-1138. http://tu-freiberg.de/sites/default/files/media/institut-fuer-theoretische-physik-10451/Lehre/Dichtefunktionaltheorie/a9rf1a3.pdf
    [12] PERDEW J P, WANG Y.Accurate and simple analytic representation of the electron-gas correlation energy[J]. Physical Review B, 1992, 45(23):13244-13249. doi: 10.1103/PhysRevB.45.13244
    [13] TROULLIER N, MARTINS J L.Efficient pseudopotentials for plane-wave calculations[J]. Physical Review B, 1991, 43(3):1993-2006. doi: 10.1103/PhysRevB.43.1993
    [14] SEGALL M D, LINDAN P J D, PROBERT M J, et al.First-principles simulation:ideas, illustrations and the CASTEP code[J]. Journal of Physics:Condensed Matter, 2002, 14:2717-2744. doi: 10.1088/0953-8984/14/11/301
    [15] MONKHORST H J, PACK J D.Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13(12):5188-5192. doi: 10.1103/PhysRevB.13.5188
    [16] PARLINSKI K, LI Z Q, KAWAZOE Y.First-principles determination of the soft mode in cubic ZrO2[J]. Physical Review Letters, 1997, 78(21):4063-4066. doi: 10.1103/PhysRevLett.78.4063
    [17] TOGO A, OBA F, TANAKA I.First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures[J]. Physical Review B, 2008, 78(13):134106. doi: 10.1103/PhysRevB.78.134106
    [18] HAUBACK B C, BRINKS H W, FJELLVG H.Accurate structure of LiAlD4 studied by combined powder neutron and X-ray diffraction[J]. Journal of Alloys and Compounds, 2002, 346(1):184-189.
    [19] SEGALL M D, PICKARD C J, SHAH R, et al.Population analysis in plane wave electronic structure calculations[J]. Molecular Physics, 1996, 89(2):571-577. doi: 10.1080/002689796173912
    [20] MULLIKEN R S.Electronic population analysis on LCAO-MO molecular wave functions[J]. The Journal of Chemical Physics, 1955, 23(10):1833-1840. doi: 10.1063/1.1740588
    [21] HU C H, CHEN D M, WANG Y M, et al.First-principles investigations of the pressure-induced structural transitions in Mg(AlH4)2[J]. Journal of Physics:Condensed Matter, 2007, 19:176205. doi: 10.1088/0953-8984/19/17/176205
    [22] WANG H, LI Q, WANG Y C, et al.High-pressure polymorphs of Li2BeH4 predicted by first-principles calculations[J]. Journal of Physics:Condensed Matter, 2009, 21:385405. doi: 10.1088/0953-8984/21/38/385405
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  6948
  • HTML全文浏览量:  2679
  • PDF下载量:  149
出版历程
  • 收稿日期:  2017-04-05
  • 修回日期:  2017-04-30

目录

    /

    返回文章
    返回