Crystal Structure and Stability of LiAlH4 from First Principles
doi: 10.11858/gywlxb.20170561
-
摘要: 基于密度泛函理论的第一性原理赝势平面波方法,研究高压下三元碱金属氢化物LiAlH4的相变行为,分析了LiAlH4高压相变的物理机制。研究表明,在1.6 GPa时LiAlH4发生了相变,从α-LiAlH4转变为空间群为I2/b的β-LiAlH4,相变时伴随18%的体积坍塌,即一级相变。通过分析声子色散曲线得出,相变与声子软化有关。Millikan布局分析表明,常压相(α-LiAlH4)是很有潜力的储氢材料。Abstract: The structural stability of LiAlH4, a promising hydrogen storage material, under high pressure was researched using the ab initio pseudopotential plane wave method.It is found that the phase transition occurs at 1.6 GPa from the α-LiAlH4 phase to the β-LiAlH4 (space group I2/b) phase.This phase transition is identified as first-order in nature with volume contractions of 18%.Moreover, the analysis of the phonon dispersion curves suggests that phase transition is related to the phonon softening.Mulliken population analyses indicated that the ambient phase (α-LiAlH4) is expected to be the most promising candidate for hydrogen storage.
-
Table 1. Optimized structural parameters, atomic position parameters for the α-LiAlH4 and the β-LiAlH4 structures
Phase Unit-cell dimensions Atom coordinates α-LiAlH4
(P21/c)a=0.485 1 nm(0.481 7 nm*)
b=0.781 4 nm(0.780 2 nm*)
c=0.773 2 nm(0.782 1 nm*)Li:(0.585, 0.459, 0.829), (0.560, 0.466, 0.827)*
Al:(0.159, 0.204, 0.938), (0.139, 0.203, 0.930)*
H1:(0.193, 0.102, 0.766), (0.183, 0.096, 0.763)*
H2:(0.377, 0.371, 0.986), (0.352, 0.371, 0.975)*
H3:(0.254, 0.082, 0.119), (0.243, 0.081, 0.115)*
H4:(0.822, 0.268, 0.882), (0.799, 0.247, 0.872)*β-LiAlH4
(I2/b)a=0.445 2 nm
b=0.445 9 nm
c=1.010 2 nm
β=89.978°Li:(0, 0.250, 0.125)
Al:(0, 0.250, 0.625)
H1:(0.259, 0.425, 0.542)
H2:(0.324, 0.508, 0.792)Note:"*" represents experimental data from Ref.[18]. Table 2. Average net charges, bond length (L) and scaled bond overlap population (Ps) between H, Al, and Li atoms in the α-LiAlH4 (at 0 GPa) and the β-LiAlH4 (at 2.0 GPa) structures
Phase Average net charge L/nm Ps H Al Li Al─H Li─H Al─H Li─H α-LiAlH4 -0.48 0.64 1.29 0.161 5 0.188 6 0.506 0.019 β-LiAlH4 -0.46 0.55 1.28 0.162 8 0.206 7 0.534 -0.063 -
[1] SCHLAPBACH L, ZÜTTEL A.Hydrogen-storage materials for mobile applications[J]. Nature, 2001, 414(6861):353-358. doi: 10.1038/35104634 [2] SCHÜTH F, BOGDANOVIC' B, FELDERHOFF M.Light metal hydrides and complex hydrides for hydrogen storage[J]. Chemical Communications, 2005, 36(2):2249-2258. [3] ZHU C Y, LIU Y H, DUAN D F.Structural transitions of NaAlH4 under high pressure by first-principles calculations[J]. Physica B:Condensed Matter, 2011, 406(8):1612-1614. doi: 10.1016/j.physb.2011.02.007 [4] DILTS J A, ASHBY E C.Thermal decomposition of complex metal hydrides[J]. Inorganic Chemistry, 1972, 11(6):1230-1236. doi: 10.1021/ic50112a015 [5] DYMOVA T N, ALEKSANDROV D P, KONOPLEV V N, et al.Spontaneous and thermal-decomposition of Lithium Tetrahydroaluminate LiAlH4-the promoting effect of mechanochemical action on the process[J]. Russian Journal of Coordination Chemistry, 1994, 20(4):279-285. http://www.academia.edu/13646109/Hydrogen_production_from_solid_reactions_between_MAlH4_and_NH4Cl [6] VAJEESTON P, RAVINDRAN P, VIDYA R, et al.Huge-pressure-induced volume collapse in LiAlH4 and its implications to hydrogen storage[J]. Physical Review B, 2003, 68:212101. doi: 10.1103/PhysRevB.68.212101 [7] PITT M P, BLANCHARD D, HAUBACK B C, et al.Pressure-induced phase transitions of the LiAlD4 system[J]. Physical Review B, 2005, 72:214113. doi: 10.1103/PhysRevB.72.214113 [8] CHELLAPPA R S, CHANDRA D, GRAMSCH S A, et al.Pressure-induced phase transformations in LiAlH4[J]. The Journal of Physical Chemistry B, 2006, 110(23):11088-11097. doi: 10.1021/jp060473d [9] TALYZIN A V, SUNDQVIST B.Reversible phase transition in LiAlH4 under high-pressure conditions[J]. Physical Review B, 2004, 70:180101. doi: 10.1103/PhysRevB.70.180101 [10] HOHENBERG P, KOHN W.Inhomogeneous electron gas[J]. Physical Review B, 1964, 136(3):864-871. [11] KOHN W, SHAM L.Self-consistent equations including exchange and correlation effects[J]. Physical Review A, 1965, 140(4):1133-1138. http://tu-freiberg.de/sites/default/files/media/institut-fuer-theoretische-physik-10451/Lehre/Dichtefunktionaltheorie/a9rf1a3.pdf [12] PERDEW J P, WANG Y.Accurate and simple analytic representation of the electron-gas correlation energy[J]. Physical Review B, 1992, 45(23):13244-13249. doi: 10.1103/PhysRevB.45.13244 [13] TROULLIER N, MARTINS J L.Efficient pseudopotentials for plane-wave calculations[J]. Physical Review B, 1991, 43(3):1993-2006. doi: 10.1103/PhysRevB.43.1993 [14] SEGALL M D, LINDAN P J D, PROBERT M J, et al.First-principles simulation:ideas, illustrations and the CASTEP code[J]. Journal of Physics:Condensed Matter, 2002, 14:2717-2744. doi: 10.1088/0953-8984/14/11/301 [15] MONKHORST H J, PACK J D.Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13(12):5188-5192. doi: 10.1103/PhysRevB.13.5188 [16] PARLINSKI K, LI Z Q, KAWAZOE Y.First-principles determination of the soft mode in cubic ZrO2[J]. Physical Review Letters, 1997, 78(21):4063-4066. doi: 10.1103/PhysRevLett.78.4063 [17] TOGO A, OBA F, TANAKA I.First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures[J]. Physical Review B, 2008, 78(13):134106. doi: 10.1103/PhysRevB.78.134106 [18] HAUBACK B C, BRINKS H W, FJELLVG H.Accurate structure of LiAlD4 studied by combined powder neutron and X-ray diffraction[J]. Journal of Alloys and Compounds, 2002, 346(1):184-189. [19] SEGALL M D, PICKARD C J, SHAH R, et al.Population analysis in plane wave electronic structure calculations[J]. Molecular Physics, 1996, 89(2):571-577. doi: 10.1080/002689796173912 [20] MULLIKEN R S.Electronic population analysis on LCAO-MO molecular wave functions[J]. The Journal of Chemical Physics, 1955, 23(10):1833-1840. doi: 10.1063/1.1740588 [21] HU C H, CHEN D M, WANG Y M, et al.First-principles investigations of the pressure-induced structural transitions in Mg(AlH4)2[J]. Journal of Physics:Condensed Matter, 2007, 19:176205. doi: 10.1088/0953-8984/19/17/176205 [22] WANG H, LI Q, WANG Y C, et al.High-pressure polymorphs of Li2BeH4 predicted by first-principles calculations[J]. Journal of Physics:Condensed Matter, 2009, 21:385405. doi: 10.1088/0953-8984/21/38/385405