Mechanical and Thermodynamic Properties for Cubic BC3 under High Pressure
-
摘要: 采用基于密度泛函理论的第一性原理赝势方法,系统地研究了立方BC3在常压和高压下的晶格常数和力学性质,包括弹性常数、弹性模量和力学各向异性。利用准简谐近似下的德拜模型研究了高温高压条件下的热力学性质。研究结果表明:常压下立方BC3具有较大的弹性模量和力学各向异性;高压下,立方BC3的晶格常数、弹性常数和弹性模量显著增加。热力学性质的计算结果表明,立方BC3具有较高的德拜温度,其摩尔定容热容和摩尔定压热容在高温高压条件下呈现明显的变化。立方BC3的德拜温度随着压力的增大而增加,但随着温度的增大而明显减小。Abstract: The lattice constant and mechanical properties of cubic BC3 under ambient and high pressure, including the elastic constants, the elastic modulus, and the mechanical anisotropy, were investigated using the first principle method in the framework of the density functional theory.The thermodynamic properties under high temperature and high pressure were calculated in terms of the quasi-harmonic Debye model.The results obtained show that the cubic BC3 possesses a large elastic modulus and a high degree of anisotropy under ambient pressure.Under high pressure, the lattice constant, elastic constants, and elastic modulus of cubic BC3 increase significantly.The results obtained from the thermodynamic calculations suggest that the cubic BC3 has a large Debye temperature, and the molar heat capacity at constant volume and pressure exhibits obvious variation under high temperature and high pressure.Meanwhile, The Debye temperature of cubic BC3 increases with the increase of pressure, but decreases with the increase of temperature.
-
Key words:
- first principle /
- cubic BC3 /
- high pressure /
- mechanical properties /
- thermodynamic properties
-
表 1 不同压力下立方BC3的体弹性模量、剪切模量和杨氏模量
Table 1. Bulk modulus, shear modulus, and Young's modulus for cubic BC3 under pressure
-
[1] HAINES J, LÉGER J M, BOCQUILLON G.Synthesis and design of superhard materials[J]. Annual Review of Materials Research, 2001, 31(1):1-23. doi: 10.1146/annurev.matsci.31.1.1 [2] TIAN Y, XU B, ZHAO Z.Microscopic theory of hardness and design of novel superhard crystals[J]. International Journal of Refractory Metals and Hard Materials, 2012, 33:93-106. doi: 10.1016/j.ijrmhm.2012.02.021 [3] NOVIKOV N V.Synthesis of superhard materials[J]. Journal of Materials Processing Technology, 2005, 161(1):169-172. https://www.sciencedirect.com/science/article/pii/S0924013604009094 [4] SOLOZHENKO V L, GREGORYANZ E.Synthesis of superhard materials[J]. Materials Today, 2005, 8(11):44-51. doi: 10.1016/S1369-7021(05)71159-7 [5] NOVIKOV N V, DUB S N.Fracture toughness of diamond single crystals[J]. Journal of Hard Materials, 1991, 2(1):3-11. https://www.researchgate.net/publication/284697397_Fracture_toughness_of_diamond_single_crystals [6] SOLOZHENKO V L, DUB S N, NOVIKOV N V.Mechanical properties of cubic BC2N, a new superhard phase[J]. Diamond and Related Materials, 2001, 10(12):2228-2231. doi: 10.1016/S0925-9635(01)00513-1 [7] ZININ P V, MING L C, ISHⅡ H A, et al.Phase transition in BCx system under high-pressure and high-temperature:synthesis of cubic dense BC3 nanostructured phase[J]. Journal of Applied Physics, 2012, 111(11):114905. doi: 10.1063/1.4723275 [8] SOLOZHENKO V L, KURAKEVYCH O O, ANDRAULT D, et al.Ultimate metastable solubility of boron in diamond:synthesis of superhard diamondlike BC5[J]. Physical Review Letters, 2009, 102(1):015506. doi: 10.1103/PhysRevLett.102.015506 [9] SOLOZHENKO V L, ANDRAULT D, FIQUET G, et al.Synthesis of superhard cubic BC2N[J]. Applied Physics Letters, 2001, 78(10):1385-1387. doi: 10.1063/1.1337623 [10] BADZIAN A R.Superhard material comparable in hardness to diamond[J]. Applied Physics Letters, 1988, 53(25):2495-2497. doi: 10.1063/1.100528 [11] CHUNG H Y, WEINBERGER M B, LEVINE J B, et al.Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure[J]. Science, 2007, 316(5823):436-439. doi: 10.1126/science.1139322 [12] GOU H, DUBROVINSKAIA N, BYKOVA E, et al.Discovery of a superhard iron tetraboride superconductor[J]. Physical Review Letters, 2013, 111(15):157002. doi: 10.1103/PhysRevLett.111.157002 [13] CROWHURST J C, GONCHAROV A F, SADIGH B, et al.Synthesis and characterization of the nitrides of platinum and iridium[J]. Science, 2006, 311(5765):1275-1278. doi: 10.1126/science.1121813 [14] KUMAR N R S, CHANDRA S, AMIRTHAPANDIAN S, et al.Investigations of the high pressure synthesized osmium carbide by experimental and computational techniques[J]. Materials Research Express, 2015, 2(1):016503. doi: 10.1088/2053-1591/2/1/016503 [15] DOMNICH V, REYNAUD S, HABER R A, et al.Boron carbide:structure, properties, and stability under stress[J]. Journal of the American Ceramic Society, 2011, 94(11):3605-3628. doi: 10.1111/jace.2011.94.issue-11 [16] GLASS C W, OGANOV A R, HANSEN N.Uspex-evolutionary crystal structure prediction[J]. Computer Physics Communications, 2006, 175(11):713-720. [17] LYAKHOV A O, OGANOV A R, STOKES H T, et al.New developments in evolutionary structure prediction algorithm uspex[J]. Computer Physics Communications, 2013, 184(4):1172-1182. doi: 10.1016/j.cpc.2012.12.009 [18] WANG Y, LV J, ZHU L, et al.CALYPSO:a method for crystal structure prediction[J]. Computer Physics Communications, 2012, 183(10):2063-2070. doi: 10.1016/j.cpc.2012.05.008 [19] ZHANG M, LIU H, LI Q, et al.Superhard BC3 in cubic diamond structure[J]. Physical Review Letters, 2015, 114(1):015502. doi: 10.1103/PhysRevLett.114.015502 [20] KRESSE G, FURTHMVLLER J.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16):11169-11186. doi: 10.1103/PhysRevB.54.11169 [21] PERDEW J P, BURKE K, ERNZERHOF M.Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18):3865-3868. doi: 10.1103/PhysRevLett.77.3865 [22] KRESSE G, JOUBERT D.From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59(3):1758-1775. doi: 10.1103/PhysRevB.59.1758 [23] HILL R.The elastic behaviour of a crystalline aggregate[J]. Proceedings of the Physical Society Section A, 1952, 65(5):349-354. doi: 10.1088/0370-1298/65/5/307 [24] OTERO-DE-LA-ROZA A, LUAÑA V.Gibbs 2:a new version of the quasi-harmonic model code.Ⅰ.robust treatment of the static data[J]. Computer Physics Communications, 2011, 182(8):1708-1720. doi: 10.1016/j.cpc.2011.04.016 [25] BIRCH F.Finite elastic strain of cubic crystals[J]. Physical Review, 1947, 71(11):809-824. doi: 10.1103/PhysRev.71.809 [26] MOUHAT F, COUDERT F X.Necessary and sufficient elastic stability conditions in various crystal systems[J]. Physical Review B, 2014, 90(22):224104. doi: 10.1103/PhysRevB.90.224104 [27] WU Z, ZHAO E, XIANG H, et al.Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles[J]. Physical Review B, 2007, 76(5):054115. doi: 10.1103/PhysRevB.76.054115 [28] ZHANG R F, VEPREK S, ARGON A S.Anisotropic ideal strengths and chemical bonding of wurtzite BN in comparison to zincblende BN[J]. Physical Review B, 2008, 77(17):998-1002. [29] WANG Y J, WANG C Y.Mechanical properties and electronic structure of superhard diamondlike BC5:a first-principles study[J]. Journal of Applied Physics, 2009, 106(4):043513. doi: 10.1063/1.3195082 [30] ZHANG R F, LIN Z J, VEPREK S.Anisotropic ideal strengths of superhard monoclinic and tetragonal carbon and their electronic origin[J]. Physical Review B, 2011, 83(15):4400-4408. [31] CAZZANI A, ROVATI M.Extrema of Young's modulus for cubic and transversely isotropic solids[J]. International Journal of Solids and Structures, 2003, 40(7):1713-1744. doi: 10.1016/S0020-7683(02)00668-6 [32] KLEIN C A.Anisotropy of Young's modulus and Poisson's ratio in diamond[J]. Materials Research Bulletin, 1992, 27(12):1407-1414. doi: 10.1016/0025-5408(92)90005-K [33] ZHENG B, ZHANG M, LUO H G.Pressure effect on structural, elastic, and thermodynamic properties of tetragonal B4C4[J]. AIP Advances, 2015, 5(3):436-439. http://www.osti.gov/scitech/biblio/22454476