高压下立方BC3的力学和热力学性质

常少梅

常少梅. 高压下立方BC3的力学和热力学性质[J]. 高压物理学报, 2018, 32(2): 021101. doi: 10.11858/gywlxb.20170640
引用本文: 常少梅. 高压下立方BC3的力学和热力学性质[J]. 高压物理学报, 2018, 32(2): 021101. doi: 10.11858/gywlxb.20170640
CHANG Shaomei. Mechanical and Thermodynamic Properties for Cubic BC3 under High Pressure[J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 021101. doi: 10.11858/gywlxb.20170640
Citation: CHANG Shaomei. Mechanical and Thermodynamic Properties for Cubic BC3 under High Pressure[J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 021101. doi: 10.11858/gywlxb.20170640

高压下立方BC3的力学和热力学性质

doi: 10.11858/gywlxb.20170640
基金项目: 

国家自然科学基金 11647007

陕西省教育厅科学研究计划 17JK0041

宝鸡文理学院科研计划项目 ZK2017009

详细信息
    作者简介:

    常少梅(1981—), 女,学士,实验师,主要从事功能材料模拟研究.E-mail:csm7027@163.com

  • 中图分类号: O521.21

Mechanical and Thermodynamic Properties for Cubic BC3 under High Pressure

  • 摘要: 采用基于密度泛函理论的第一性原理赝势方法,系统地研究了立方BC3在常压和高压下的晶格常数和力学性质,包括弹性常数、弹性模量和力学各向异性。利用准简谐近似下的德拜模型研究了高温高压条件下的热力学性质。研究结果表明:常压下立方BC3具有较大的弹性模量和力学各向异性;高压下,立方BC3的晶格常数、弹性常数和弹性模量显著增加。热力学性质的计算结果表明,立方BC3具有较高的德拜温度,其摩尔定容热容和摩尔定压热容在高温高压条件下呈现明显的变化。立方BC3的德拜温度随着压力的增大而增加,但随着温度的增大而明显减小。

     

  • 图  立方BC3的晶体结构

    Figure  1.  Crystal structure of cubic BC3

    图  立方BC3归一化晶格常数a/a0和密度ρ/ρ0随压力的变化关系(a)以及能量-体积物态方程(b)

    Figure  2.  Pressure dependence of normalized lattice constants a/a0 and density ρ/ρ0 (a), and the equation of state for cubic BC3 (b)

    图  立方BC3弹性常数随压力的变化关系

    Figure  3.  Pressure dependence of elastic constants for cubic BC3

    图  杨氏模量各向异性的三维图(a)和平面投影图(b)

    Figure  4.  Three-dimensional plot (a) and the corresponding projection (b) of anisotropy of Young's modulus

    图  立方BC3的摩尔定容热容cV、摩尔定压热容cp和德拜温度随压力和温度的变化关系

    Figure  5.  Molar heat capacity cV, cp and Debye temperature vs. pressure and temperature for cubic BC3

    表  1  不同压力下立方BC3的体弹性模量、剪切模量和杨氏模量

    Table  1.   Bulk modulus, shear modulus, and Young's modulus for cubic BC3 under pressure

    Material Pressure/GPa B/GPa G/GPa Y/GPa
    d-BC3 0 34 5 318 730
    10 381 332 772
    20 416 343 807
    30 450 354 84 1
    4 0 483 363 870
    50 515 371 898
    60 54 7 379 923
    70 578 386 94 8
    80 610 393 971
    90 64 0 399 992
    100 671 4 05 1 012
    c-BN[28] 0 376 390
    Diamond[29-30] 0 432 517 1109
    下载: 导出CSV
  • [1] HAINES J, LÉGER J M, BOCQUILLON G.Synthesis and design of superhard materials[J]. Annual Review of Materials Research, 2001, 31(1):1-23. doi: 10.1146/annurev.matsci.31.1.1
    [2] TIAN Y, XU B, ZHAO Z.Microscopic theory of hardness and design of novel superhard crystals[J]. International Journal of Refractory Metals and Hard Materials, 2012, 33:93-106. doi: 10.1016/j.ijrmhm.2012.02.021
    [3] NOVIKOV N V.Synthesis of superhard materials[J]. Journal of Materials Processing Technology, 2005, 161(1):169-172. https://www.sciencedirect.com/science/article/pii/S0924013604009094
    [4] SOLOZHENKO V L, GREGORYANZ E.Synthesis of superhard materials[J]. Materials Today, 2005, 8(11):44-51. doi: 10.1016/S1369-7021(05)71159-7
    [5] NOVIKOV N V, DUB S N.Fracture toughness of diamond single crystals[J]. Journal of Hard Materials, 1991, 2(1):3-11. https://www.researchgate.net/publication/284697397_Fracture_toughness_of_diamond_single_crystals
    [6] SOLOZHENKO V L, DUB S N, NOVIKOV N V.Mechanical properties of cubic BC2N, a new superhard phase[J]. Diamond and Related Materials, 2001, 10(12):2228-2231. doi: 10.1016/S0925-9635(01)00513-1
    [7] ZININ P V, MING L C, ISHⅡ H A, et al.Phase transition in BCx system under high-pressure and high-temperature:synthesis of cubic dense BC3 nanostructured phase[J]. Journal of Applied Physics, 2012, 111(11):114905. doi: 10.1063/1.4723275
    [8] SOLOZHENKO V L, KURAKEVYCH O O, ANDRAULT D, et al.Ultimate metastable solubility of boron in diamond:synthesis of superhard diamondlike BC5[J]. Physical Review Letters, 2009, 102(1):015506. doi: 10.1103/PhysRevLett.102.015506
    [9] SOLOZHENKO V L, ANDRAULT D, FIQUET G, et al.Synthesis of superhard cubic BC2N[J]. Applied Physics Letters, 2001, 78(10):1385-1387. doi: 10.1063/1.1337623
    [10] BADZIAN A R.Superhard material comparable in hardness to diamond[J]. Applied Physics Letters, 1988, 53(25):2495-2497. doi: 10.1063/1.100528
    [11] CHUNG H Y, WEINBERGER M B, LEVINE J B, et al.Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure[J]. Science, 2007, 316(5823):436-439. doi: 10.1126/science.1139322
    [12] GOU H, DUBROVINSKAIA N, BYKOVA E, et al.Discovery of a superhard iron tetraboride superconductor[J]. Physical Review Letters, 2013, 111(15):157002. doi: 10.1103/PhysRevLett.111.157002
    [13] CROWHURST J C, GONCHAROV A F, SADIGH B, et al.Synthesis and characterization of the nitrides of platinum and iridium[J]. Science, 2006, 311(5765):1275-1278. doi: 10.1126/science.1121813
    [14] KUMAR N R S, CHANDRA S, AMIRTHAPANDIAN S, et al.Investigations of the high pressure synthesized osmium carbide by experimental and computational techniques[J]. Materials Research Express, 2015, 2(1):016503. doi: 10.1088/2053-1591/2/1/016503
    [15] DOMNICH V, REYNAUD S, HABER R A, et al.Boron carbide:structure, properties, and stability under stress[J]. Journal of the American Ceramic Society, 2011, 94(11):3605-3628. doi: 10.1111/jace.2011.94.issue-11
    [16] GLASS C W, OGANOV A R, HANSEN N.Uspex-evolutionary crystal structure prediction[J]. Computer Physics Communications, 2006, 175(11):713-720.
    [17] LYAKHOV A O, OGANOV A R, STOKES H T, et al.New developments in evolutionary structure prediction algorithm uspex[J]. Computer Physics Communications, 2013, 184(4):1172-1182. doi: 10.1016/j.cpc.2012.12.009
    [18] WANG Y, LV J, ZHU L, et al.CALYPSO:a method for crystal structure prediction[J]. Computer Physics Communications, 2012, 183(10):2063-2070. doi: 10.1016/j.cpc.2012.05.008
    [19] ZHANG M, LIU H, LI Q, et al.Superhard BC3 in cubic diamond structure[J]. Physical Review Letters, 2015, 114(1):015502. doi: 10.1103/PhysRevLett.114.015502
    [20] KRESSE G, FURTHMVLLER J.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16):11169-11186. doi: 10.1103/PhysRevB.54.11169
    [21] PERDEW J P, BURKE K, ERNZERHOF M.Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18):3865-3868. doi: 10.1103/PhysRevLett.77.3865
    [22] KRESSE G, JOUBERT D.From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59(3):1758-1775. doi: 10.1103/PhysRevB.59.1758
    [23] HILL R.The elastic behaviour of a crystalline aggregate[J]. Proceedings of the Physical Society Section A, 1952, 65(5):349-354. doi: 10.1088/0370-1298/65/5/307
    [24] OTERO-DE-LA-ROZA A, LUAÑA V.Gibbs 2:a new version of the quasi-harmonic model code.Ⅰ.robust treatment of the static data[J]. Computer Physics Communications, 2011, 182(8):1708-1720. doi: 10.1016/j.cpc.2011.04.016
    [25] BIRCH F.Finite elastic strain of cubic crystals[J]. Physical Review, 1947, 71(11):809-824. doi: 10.1103/PhysRev.71.809
    [26] MOUHAT F, COUDERT F X.Necessary and sufficient elastic stability conditions in various crystal systems[J]. Physical Review B, 2014, 90(22):224104. doi: 10.1103/PhysRevB.90.224104
    [27] WU Z, ZHAO E, XIANG H, et al.Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles[J]. Physical Review B, 2007, 76(5):054115. doi: 10.1103/PhysRevB.76.054115
    [28] ZHANG R F, VEPREK S, ARGON A S.Anisotropic ideal strengths and chemical bonding of wurtzite BN in comparison to zincblende BN[J]. Physical Review B, 2008, 77(17):998-1002.
    [29] WANG Y J, WANG C Y.Mechanical properties and electronic structure of superhard diamondlike BC5:a first-principles study[J]. Journal of Applied Physics, 2009, 106(4):043513. doi: 10.1063/1.3195082
    [30] ZHANG R F, LIN Z J, VEPREK S.Anisotropic ideal strengths of superhard monoclinic and tetragonal carbon and their electronic origin[J]. Physical Review B, 2011, 83(15):4400-4408.
    [31] CAZZANI A, ROVATI M.Extrema of Young's modulus for cubic and transversely isotropic solids[J]. International Journal of Solids and Structures, 2003, 40(7):1713-1744. doi: 10.1016/S0020-7683(02)00668-6
    [32] KLEIN C A.Anisotropy of Young's modulus and Poisson's ratio in diamond[J]. Materials Research Bulletin, 1992, 27(12):1407-1414. doi: 10.1016/0025-5408(92)90005-K
    [33] ZHENG B, ZHANG M, LUO H G.Pressure effect on structural, elastic, and thermodynamic properties of tetragonal B4C4[J]. AIP Advances, 2015, 5(3):436-439. http://www.osti.gov/scitech/biblio/22454476
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  7380
  • HTML全文浏览量:  2920
  • PDF下载量:  640
出版历程
  • 收稿日期:  2017-09-14
  • 修回日期:  2017-09-20

目录

    /

    返回文章
    返回