爆破荷载下新型胶凝原料胶结分级尾砂充填采场的动态响应分析

何文 秦政 王成 赵奎 石文芳 宁建国

何文, 秦政, 王成, 赵奎, 石文芳, 宁建国. 爆破荷载下新型胶凝原料胶结分级尾砂充填采场的动态响应分析[J]. 高压物理学报, 2017, 31(6): 803-812. doi: 10.11858/gywlxb.2017.06.016
引用本文: 何文, 秦政, 王成, 赵奎, 石文芳, 宁建国. 爆破荷载下新型胶凝原料胶结分级尾砂充填采场的动态响应分析[J]. 高压物理学报, 2017, 31(6): 803-812. doi: 10.11858/gywlxb.2017.06.016
HE Wen, QIN Zheng, WANG Cheng, ZHAO Kui, SHI Wen-Fang, NING Jian-Guo. Dynamic Response of New Cementitious Material Pasted Backfill under Explosion Loading[J]. Chinese Journal of High Pressure Physics, 2017, 31(6): 803-812. doi: 10.11858/gywlxb.2017.06.016
Citation: HE Wen, QIN Zheng, WANG Cheng, ZHAO Kui, SHI Wen-Fang, NING Jian-Guo. Dynamic Response of New Cementitious Material Pasted Backfill under Explosion Loading[J]. Chinese Journal of High Pressure Physics, 2017, 31(6): 803-812. doi: 10.11858/gywlxb.2017.06.016

爆破荷载下新型胶凝原料胶结分级尾砂充填采场的动态响应分析

doi: 10.11858/gywlxb.2017.06.016
基金项目: 

国家自然科学基金 51604127

江西省重点研发计划重点项目 20161BBG70077

江西省自然科学基金 20171BAB206021

详细信息
    作者简介:

    何文(1981—), 男,博士,副教授,主要从事矿山岩石力学与岩土工程测试技术研究. E-mail:herman3@163.com

    通讯作者:

    赵奎(1969—), 男,博士,教授,主要从事矿山岩石力学研究.E-mail:yglmf_zk@163.com

  • 中图分类号: O383.1; TD85

Dynamic Response of New Cementitious Material Pasted Backfill under Explosion Loading

  • 摘要: 某矿山在下向分层胶结充填采矿法中拟采用新型胶凝原料GSX代替水泥,为了研究爆破振动是否对新型尾砂胶结充填体顶板造成损伤,在爆破振动试验、理论基础分析、实验结果回归分析的基础上,采用FLAC3D软件模拟了回采进路巷道顶板充填体在爆破振动荷载下的动态响应,对3种方案制备的充填体(水泥胶结充填体、灰砂比为1:6和1:12的新型尾砂胶结充填体、灰砂比为1:8的新型尾砂胶结充填体)的稳定性进行对比。模拟结果表明:当爆破振动荷载相同时,水泥胶结充填体和新型尾砂胶结充填体在xyz方向的峰值振速差别不大;灰砂比为1:6和1:12的新型尾砂胶结充填体的振速略大于水泥胶结充填体,且差值在6.8%以内;灰砂比为1:8的新型尾砂胶结充填体的振速略小于水泥胶结充填体。因此,以GSX胶结剂为新型胶凝原料,选用两种充填方案,均可达到原工程爆破设计要求。

     

  • 图  测点布置

    Figure  1.  Layout of measuring points

    图  散点分布及线性回归

    Figure  2.  Scattered points distribution and linear regression

    图  数值模型及网格划分

    Figure  3.  Numerical model and mesh generation

    图  数值模型的边界条件

    Figure  4.  Boundary conditions of numerical model

    图  1#测点实测水平径向振动速度时程

    Figure  5.  Time-history of the measured horizontal radial vibration velocity at point 1#

    图  1#测点实测垂直径向振动速度时程

    Figure  6.  Time-history of the measured vertical radial vibration velocity at point 1#

    图  模型断面监测点安置

    Figure  7.  Monitoring point arrangement in cross section of model

    图  原方案测点y=5 m处各方向的振速时程

    Figure  8.  Time-history of vibration velocity of original plan in x, y, z directions at monitoring point y=5 m

    图  原方案测点y=10 m处各方向的振速时程

    Figure  9.  Time-history of vibration velocity of original plan in x, y, z directions at monitoring point y=10 m

    图  10  原方案测点y=15 m处各方向的振速时程

    Figure  10.  Time-history of vibration velocity of original plan in x, y, z directions at monitoring point y=15 m

    图  11  方案一测点y=5 m处各方向的振速时程

    Figure  11.  Time-history of vibration velocity of plan 1 in x, y, z directions at monitoring point y=5 m

    图  12  方案一测点y=10 m处各方向的振速时程

    Figure  12.  Time-history of vibration velocity of plan 1 in x, y, z directions at monitoring point y=10 m

    图  13  方案一测点y=15 m处各方向的振速时程

    Figure  13.  Time-history of vibration velocity of plan 1 in x, y, z directions at monitoring point y=15 m

    图  14  方案二测点y=5 m处各方向的振速时程

    Figure  14.  Time-history of vibration velocity of plan 2 in x, y, z directions at monitoring point y=5 m

    图  15  方案二测点y=10 m处各方向的振速时程

    Figure  15.  Time-history of vibration velocity of plan 2 in x, y, z directions at monitoring point y=10 m

    图  16  方案二测点y=15 m处各方向的振速时程

    Figure  16.  Time-history of vibration velocity of plan 2 in x, y, z directions at monitoring point y=15 m

    表  1  1#、2#、3#、4#测点测试数据

    Table  1.   Data obtained at measuring points 1#, 2#, 3#, 4#

    Measuring point Direction Maximum velocity/ (cm/s) Main frequency/ (Hz) Maximum displacement/ (mm) Maximum acceleration/ (m/s2) Maximum 3D stacking velocity/ (cm/s) Nearest horizontal distance/(m)
    1# T
    V
    R
    0.890
    2.400
    0.940
    146
    82
    108
    0.228
    0.055
    0.269
    1.326
    2.121
    0.742
    2.440 20.0
    2# T
    V
    R
    1.003
    1.918
    1.435
    158
    137
    146
    0.070
    0.029
    0.058
    0.954
    1.591
    1.220
    2.131 27.0
    3# T
    V
    R
    0.762
    1.803
    0.787
    171
    68
    62
    0.011
    0.027
    0.017
    0.795
    1.856
    0.636
    1.818 34.4
    4# T
    V
    R
    0.533
    1.245
    0.495
    171
    114
    54
    0.019
    0.019
    0.010
    0.583
    0.954
    0.583
    1.309 38.3
    下载: 导出CSV

    表  2  岩体物理、力学参数

    Table  2.   Physical and mechanical parameters of rock

    Rock mass Density/ (kg/m3) Elastic Modulus/(GPa) Poisson's ratio σcm/ (MPa) σtm/ (MPa) c/ (MPa) φ/ (°)
    Orebody 3 389 10.63 0.26 9.74 1.00 1.56 54.5
    Country rock 2 587 20.83 0.20 8.39 0.91 1.38 53.6
    下载: 导出CSV

    表  3  胶结充填体主要参数

    Table  3.   Physical and mechanical parameters of pasted backfill

    Pasted backfill Density/ (kg/m3) Elastic modulus/ (GPa) Poisson's ratio σcm/ (MPa) σtm/ (MPa) c/ (MPa) φ/ (°)
    Cementitious material Cement-sand ratio
    Cement mortar 1:8
    1:4
    1 750
    1 670
    0.42
    0.69
    0.27
    0.24
    1.86
    4.07
    0.15
    0.30
    0.22
    0.64
    25.71
    37.85
    GSX cementing agent 1:12
    1:8
    1:6
    1 690
    1 680
    1 650
    0.39
    0.56
    0.63
    0.31
    0.27
    0.25
    1.89
    3.13
    4.17
    0.13
    0.24
    0.32
    0.24
    0.52
    0.71
    33.38
    38.63
    41.37
    下载: 导出CSV

    表  4  监测点峰值振速

    Table  4.   Peak particle velocity at the monitoring points

    Monitoring point Backfill plan Peak particle velocity/(cm/s) Maximum stacking velocity/(cm/s)
    x direction y direction z direction
    y=5 m Original plan
    Plan 1
    Plan 2
    0.971
    0.983
    0.927
    2.707
    2.755
    2.358
    1.272
    1.339
    1.728
    3.145
    3.217
    3.067
    y=10 m Original plan
    Plan 1
    Plan 2
    0.484
    0.517
    0.391
    1.439
    1.457
    1.178
    0.891
    0.926
    1.107
    1.760
    1.802
    1.663
    y=15 m Original plan
    Plan 1
    Plan 2
    0.274
    0.294
    0.278
    0.543
    0.565
    0.588
    0.664
    0.735
    0.781
    0.900
    0.973
    1.016
    下载: 导出CSV
  • [1] 周爱民.发挥采矿科研优势促进矿山技术进步[J].矿业研究与开发, 2006, 26: 8-14. http://d.old.wanfangdata.com.cn/Periodical/kyyjykf2006z1002

    ZHOU A M.Giving play to superiority of scientific research in mining to bring about an advance in mining[J]. Technology Mining Research and Development, 2006, 26: 8-14. http://d.old.wanfangdata.com.cn/Periodical/kyyjykf2006z1002
    [2] 吕辉, 陈广平.矿山胶结充填技术述评与展望[J].矿业快报, 2004, 20(10): 1-2. http://d.old.wanfangdata.com.cn/Periodical/kykb200410001

    LV H, CHEN G P.Review and prospect of the consolidated fill technology of mines[J].Express Information of Mining Industry, 2004, 20(10): 1-2. http://d.old.wanfangdata.com.cn/Periodical/kykb200410001
    [3] 夏长念, 孙学森.充填采矿法及充填技术的应用现状及发展趋势[J].中国矿山工程, 2014, 43(1): 61-64. doi: 10.3969/j.issn.1672-609X.2014.01.016

    XIA C N, SUN X S.Application and developing trend of filled slopes method and filling technology[J]. China Mine Engineering, 2014, 43(1): 61-64. doi: 10.3969/j.issn.1672-609X.2014.01.016
    [4] 闫长斌, 徐国元, 李夕兵.爆破震动对采空区稳定性影响的FLAC3D分析[J].岩石力学与工程学报, 2005, 24(16): 2894-2899. doi: 10.3321/j.issn:1000-6915.2005.16.014

    YAN C B, XU G Y, LI X B. Stability analysis of mined-out areas influenced by blasting vibration with FLAC3D[J].Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16): 2894-2899. doi: 10.3321/j.issn:1000-6915.2005.16.014
    [5] 陈士海, 魏海霞, 曹孝君, 等.爆破地震波频率对多自由度弹性体系动力响应的影响分析[J].振动与冲击, 2009, 28(11): 150-154, 210. http://d.old.wanfangdata.com.cn/Periodical/zdycj200911036

    CHEN S H, WEI H X, CAO X J, et al. Effect analysis of blasting seismic wave frequency on dynamic response of a multi-degrees of freedom elastic system[J]. Journal of Vibration and Shock, 2009, 28(11): 150-154, 210. http://d.old.wanfangdata.com.cn/Periodical/zdycj200911036
    [6] 贺桂成, 刘永, 丁德馨, 等.废石胶结充填体强度特性及其应用研究[J].采矿与安全工程学报, 2013, 30(1): 74-79. http://d.old.wanfangdata.com.cn/Periodical/csjsllyj2015010389

    HE G C, LIU Y, DING D X, et al. Strength characteristic of cemented waste rock backfills and its application[J]. Journal of Mining & Safety Engineering, 2013, 30(1): 74-79. http://d.old.wanfangdata.com.cn/Periodical/csjsllyj2015010389
    [7] YILMAZ E, BELEM T, BENZAAZOUA M. Study of physico-chemical and mechanical characteristics of consolidated and unconsolidated cemented paste backfills[J]. Gospod Surowcami Min, 2013, 29(1): 81-100. https://www.researchgate.net/publication/258222555_Study_of_physico-chemical_and_mechanical_characteristics_of_consolidated_and_unconsolidated_cemented_paste_backfills
    [8] 刘贤俊, 何文, 谢勇, 等.新型尾砂胶结剂胶结分级尾砂充填体强度研究[J].有色金属科学与工程, 2015, 6(2): 72-79. http://d.old.wanfangdata.com.cn/Periodical/jxysjs201502014

    LIU X J, HE W, XIE Y, et al.Strength of cemented classifying tailings backfilled by new cementing agent[J].Nonferrous Metals Science and Engineering, 2015, 6(2):72-79. http://d.old.wanfangdata.com.cn/Periodical/jxysjs201502014
    [9] 谭忠盛, 杨小林, 王梦恕.复线隧道施工爆破对既有隧道的影响分析[J].岩石力学与工程学报, 2003, 22(2): 281-285. doi: 10.3321/j.issn:1000-6915.2003.02.023

    TAN Z S, YANG X L, WANG M S.Effect of blast in double tunnel on existing tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(2): 281-285. doi: 10.3321/j.issn:1000-6915.2003.02.023
    [10] SINGH P K. Blast vibration damage to underground coal mines from adjacent open-pit blasting[J]. Int J Rock Mech Min Sci, 2002, 39(8): 959-973. doi: 10.1016/S1365-1609(02)00098-9
    [11] 花刚.爆破振动安全判据浅析[J].爆破, 2004, 21(2): 98-100. doi: 10.3963/j.issn.1001-487X.2004.02.032

    HUA G. Analysis of the safety criteria for blasting vibration[J]. Blasting, 2004, 21(2): 98-100. doi: 10.3963/j.issn.1001-487X.2004.02.032
    [12] 毛志远, 徐全军.考虑频率影响的爆破震动安全判据的工程实践[J].工程爆破, 2001, 7(3): 19-22. doi: 10.3969/j.issn.1006-7051.2001.03.005

    MAO Z Y, XU Q J.An engineering practice on safety criterion of blasting vibration considering the effect of frequency[J].Engineering Blasting, 2001, 7(3): 19-22. doi: 10.3969/j.issn.1006-7051.2001.03.005
    [13] LU W, LUO Y, CHEN M, et al.An introduction to Chinese safety regulations for blasting vibration[J]. Environ Earth Sci, 2012, 67(7): 1951-1959. doi: 10.1007/s12665-012-1636-9
    [14] 罗忆, 卢文波, 陈明, 等.爆破振动安全判据研究综述[J].爆破, 2010, 27(1): 14-22. doi: 10.3963/j.issn.1001-487X.2010.01.004

    LUO Y, LU W B, CHEN M, et al. View of research on safety criterion of blasting vibration[J]. Blasting, 2010, 27(1): 14-22. doi: 10.3963/j.issn.1001-487X.2010.01.004
    [15] 吴立.凿岩爆破工程[M].长沙:中南大学出版社, 2011.
    [16] 国家安全生产监督管理总局.爆破安全规程: GB 6722-2011[S].北京: 中国标准出版社, 2012.
    [17] 钟冬望, 吴亮, 陈浩.爆炸荷载下岩质边坡动力特性试验及数值分析研究[J].岩石力学与工程学报, 2010, 29(增刊1): 2964-2971. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb2010z1053

    ZHONG D W, WU L, CHEN H. Model test and numerical simulation study of dynamic characteristics of rock slope under blast loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(Suppl 1): 2964-2971. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb2010z1053
    [18] 杨风威, 李海波, 刘亚群, 等.台山核电站边坡爆破振动监测及数值模拟研究[J].岩土力学, 2011, 32(增刊2): 628-633. http://d.old.wanfangdata.com.cn/Conference/7528532

    YANG F W, LI H B, LIU Y Q, et al. Monitoring of blasting vibration and numerical simulation of slope in Taishan Nuclear Power Station[J]. Rock and Soil Mechanics, 2011, 32(Suppl 2): 628-633. http://d.old.wanfangdata.com.cn/Conference/7528532
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  7502
  • HTML全文浏览量:  3175
  • PDF下载量:  222
出版历程
  • 收稿日期:  2017-01-11
  • 修回日期:  2017-03-17

目录

    /

    返回文章
    返回