基于Cowper-Symonds本构模型铁路车轮扁疤激发的轮轨冲击仿真分析

韩亮亮 敬霖 赵隆茂

韩亮亮, 敬霖, 赵隆茂. 基于Cowper-Symonds本构模型铁路车轮扁疤激发的轮轨冲击仿真分析[J]. 高压物理学报, 2017, 31(6): 785-793. doi: 10.11858/gywlxb.2017.06.014
引用本文: 韩亮亮, 敬霖, 赵隆茂. 基于Cowper-Symonds本构模型铁路车轮扁疤激发的轮轨冲击仿真分析[J]. 高压物理学报, 2017, 31(6): 785-793. doi: 10.11858/gywlxb.2017.06.014
HAN Liang-Liang, JING Lin, ZHAO Long-Mao. Finite Element Simulation of the Flat-Induced Wheel-Rail Impact Based on the Cowper-Symonds Empirical Model[J]. Chinese Journal of High Pressure Physics, 2017, 31(6): 785-793. doi: 10.11858/gywlxb.2017.06.014
Citation: HAN Liang-Liang, JING Lin, ZHAO Long-Mao. Finite Element Simulation of the Flat-Induced Wheel-Rail Impact Based on the Cowper-Symonds Empirical Model[J]. Chinese Journal of High Pressure Physics, 2017, 31(6): 785-793. doi: 10.11858/gywlxb.2017.06.014

基于Cowper-Symonds本构模型铁路车轮扁疤激发的轮轨冲击仿真分析

doi: 10.11858/gywlxb.2017.06.014
基金项目: 

国家自然科学基金 51475392

国家自然科学基金 11772275

西南交通大学引进人才科研启动项目 2682015RC09

牵引动力国家重点实验室自主研究课题 2015TPL_T02

详细信息
    作者简介:

    韩亮亮(1990—), 男,硕士研究生,主要从事轮轨冲击动力学研究.E-mail:hanlohas@163.com

    通讯作者:

    敬霖(1984—), 男,博士,副研究员,主要从事轨道交通冲击动力学研究.E-mail:jinglin@swjtu.edu.cn

  • 中图分类号: O347.1; U211.5

Finite Element Simulation of the Flat-Induced Wheel-Rail Impact Based on the Cowper-Symonds Empirical Model

  • 摘要: 轮轨关系是高速铁路工程领域最重要的研究课题之一,车轮扁疤作为一种主要的轮轨失效形式,严重影响了高速列车运行的平稳性和安全性。利用Hypermesh软件建立了带有扁疤的三维轮轨滚动接触模型,并基于轮、轨钢Cowper-Symonds本构模型,采用LS-DYNA 3D显式算法进行了相应的有限元仿真分析,重点研究了车速、扁疤长度和轴重对轮轨冲击响应的影响。仿真结果表明:车轮扁疤缺陷引起的最大轮轨垂向冲击力显著大于相应的准静态垂向载荷,最大von Mises等效应力和最大等效塑性应变通常发生在轮轨接触表面;轮、轨钢的应变率效应对轮轨垂向冲击力没有影响,但由于应变率的强化效应,与不计应变率效应的结果相比,基于Cowper-Symonds模型得到的最大von Mises等效应力明显增大,而最大等效塑性应变略有降低;车速、扁疤长度和轴重对轮轨冲击响应均有显著的影响。研究结果可为轮轨系统的安全性设计与评估提供技术支持。

     

  • 图  不同应变率下轮辋钢的压缩真实应力-真实应变响应曲线

    Figure  1.  Compressive true stress-strain response curves of rim steels at different strain rates

    图  轮轨滚动接触模型(扁疤长度为40 mm)

    Figure  2.  Finite element model of wheel-rail rolling contact with the flat length of 40 mm

    图  典型的轮轨垂向冲击力时程曲线

    Figure  3.  Typical wheel-rail vertical impact force time-history curves

    图  典型的von Mises等效应力和等效塑性应变时程曲线

    Figure  4.  Typical von Mises equivalent stress and equivalent plastic strain time-history curves

    图  典型的von Mises等效应力云图

    Figure  5.  Typical von Mises equivalent stress contours

    图  典型的等效塑性应变云图

    Figure  6.  Typical equivalent plastic strain contours

    图  车速对最大轮轨垂向冲击力的影响

    Figure  7.  Influence of train speed on maximum wheel-rail vertical impact force

    图  不同扁疤长度引起的车轮最大von Mises等效应力与车速的关系

    Figure  8.  Maximum von Mises equivalent stress of wheel induced by different flat lengths as a function of train speed

    图  不同扁疤长度引起的车轮最大等效塑性应变和车速的关系

    Figure  9.  Maximum equivalent plastic strain of wheel induced by different flat lengths as a function of train speed

    图  10  扁疤长度对最大轮轨垂向冲击力的影响

    Figure  10.  Influence of flat length on maximum wheel-rail vertical impact force

    图  11  车轮最大von Mises等效应力和扁疤长度的关系

    Figure  11.  Maximum von Mises equivalent stress of wheel as a function of flat length

    图  12  车轮最大等效塑性应变和扁疤长度的关系

    Figure  12.  Maximum equivalent plastic strain of wheel as a function of flat length

    图  13  轴重对轮轨垂向冲击力响应的影响

    Figure  13.  Influence of axle load on the wheel-rail vertical impact force response

    图  14  车轮最大von Mises等效应力、最大等效塑性应变和轴重的关系

    Figure  14.  Maximum von Mises equivalent stress and maximum equivalent plastic strain of wheel as a function of axle load

    表  1  车轮和钢轨的材料参数

    Table  1.   Material parameters of wheel and rail

    Part Density/ (kg/m3) Elasticity modulus/(GPa) Poisson's ratio Yield stress/ (GPa) Tangent modulus/(GPa) C/ (ms-1) P
    Rim 7 800 213 0.3 0.561 21 45.635 3.21
    Web 7 800 216 0.3 0.395 21
    Hub 7 800 213 0.3 0.417 21
    Axle 7 800 206 0.3 0.560 20
    Rail 7 800 193 0.3 0.525 19 1.733 0.3
    下载: 导出CSV
  • [1] LIANG B, IWNICKI S D, ZHAO Y, et al.Railway wheel-flat and rail surface defect modelling and analysis by time-frequency techniques[J].Veh Syst Dyn, 2013, 51(9):1403-1421. doi: 10.1080/00423114.2013.804192
    [2] Joint Committee on Relation between Track and Equipment of the Mechanical and Engineering Divisions AAR.Effect of flat wheels on track and equipment[M].American Railway Engineering Association, 1952, 53: 423-448.
    [3] JOHANSSON A, NIELSEN J O.Out-of-round railway wheels-wheel rail contact forces and track response derived from field tests and numerical simulations[J].P I Mech Eng F, J Rail, 2003, 217(2):135-146. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ023497717/
    [4] 姜涛, 孙守光, 缪龙秀, 等.车轮扁疤动力冲击的仿真研究及其检测原理[J].铁道车辆, 2005, 36(5): 25-27. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800575961

    JIANG T, SUN S G, MIAO L X, et al.The emulation research for the dynamic impact by the wheel flat and the inspection principles[J].Rolling Stock, 2005, 36(5):25-27. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800575961
    [5] NIELSEN J C O, IGELAND A.Vertical dynamic interaction between train and track influence of wheel and track imperfections[J].J Sound Vib, 1995, 187(5):825-839. doi: 10.1006/jsvi.1995.0566
    [6] BAEZA L, RODA A, CARBALLEIRA J, et al.Railway train-track dynamics for wheelflats with improved contact models[J].Nonlinear Dyn, 2006, 45(3):385-397. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f02810098f56d2843fd8cf6de8ec672d
    [7] SILVA C R Á JR, DE DEUS H, MANTOVANI G E, et al.Galerkin solution of stochastic beam bending on winkler foundations[J].CMES-Comp Model Eng Sci, 2010, 67(2):119-150. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f15ecad10a7e3262d430c0a38a5e7f61
    [8] PIERINGER A, KROPP W, NIELSEN J C O.The influence of contact modelling on simulated wheel/rail interaction due to wheel flats[J].Wear, 2014, 314(1):273-281. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d4cf8c4b2c792dcbcca900e2eef8793c
    [9] FORD R A J, THOMPSON D J.Simplified contact filters in wheel rail noise prediction[J].J Sound Vib, 2006, 293(3):807-818. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=657cafa8442051613ed41e48d86852a7
    [10] LIU Y, LIU J X, GUO Y J.Study on dynamic simulation input form of locomotive wheel flat[J].Appl Mech Mater, 2012, 215:946-949. http://www.scientific.net/AMM.215-216.946
    [11] 王忆佳, 曾京, 高浩, 等.车轮扁疤引起的轮轨冲击分析[J].西南交通大学学报, 2014, 49(4): 700-705. doi: 10.3969/j.issn.0258-2724.2014.04.022

    WANG Y J, ZENG J, GAO H, et al.Analysis of wheel/rail impact induced by wheel flats[J].Journal of Southwest Jiaotong University, 2014, 49(4):700-705. doi: 10.3969/j.issn.0258-2724.2014.04.022
    [12] 翟婉明.铁路轮轨冲击振动模拟与试验[J].计算力学学报, 1999, 16(1): 93-99. doi: 10.3969/j.issn.1007-4708.1999.01.014

    ZHAI W M.Simulation and experiment of railway wheel/rail impact vibrations[J].Journal of Computational Mechanics, 1999, 16(1):93-99. doi: 10.3969/j.issn.1007-4708.1999.01.014
    [13] PLETZ M, DAVES W, OSSBERGER H.A wheel set/crossing model regarding impact, sliding and deformation-explicit finite element approach[J].Wear, 2012, 294/295:446-456. doi: 10.1016/j.wear.2012.07.033
    [14] BIAN J, GU Y T, MURRAY M H.A dynamic wheel-rail impact analysis of railway track under wheel flat by finite element analysis[J].Veh Syst Dyn, 2013, 51(6):784-797. doi: 10.1080/00423114.2013.774031
    [15] 田越, 程育仁.高应变率下U71Mn轨钢动态力学性能研究[J].中国铁道科学, 1992, 13(2):34-42. http://d.old.wanfangdata.com.cn/Thesis/Y121064

    TIAN Y, CHENG Y R.Studies on the dynamic behavior of U71Mn rail steel under high strain rates[J].China Railway Science, 1992, 13(2):34-42. http://d.old.wanfangdata.com.cn/Thesis/Y121064
    [16] WU T X, THOMPSON D J.A hybrid model for the noise generation due to railway wheel flats[J].J Sound Vib, 2002, 251(1):115-139. doi: 10.1006/jsvi.2001.3980
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  8446
  • HTML全文浏览量:  3713
  • PDF下载量:  317
出版历程
  • 收稿日期:  2017-01-13
  • 修回日期:  2017-03-23

目录

    /

    返回文章
    返回