筋条形状对复合材料加筋壁板低速冲击动态响应的影响

丁铁 张晓晴 姚小虎

丁铁, 张晓晴, 姚小虎. 筋条形状对复合材料加筋壁板低速冲击动态响应的影响[J]. 高压物理学报, 2017, 31(6): 769-777. doi: 10.11858/gywlxb.2017.06.012
引用本文: 丁铁, 张晓晴, 姚小虎. 筋条形状对复合材料加筋壁板低速冲击动态响应的影响[J]. 高压物理学报, 2017, 31(6): 769-777. doi: 10.11858/gywlxb.2017.06.012
DING Tie, ZHANG Xiao-Qing, YAO Xiao-Hu. Effect of Stiffener Shape on Low-Velocity Impact Behavior of Composite Stiffened Panels[J]. Chinese Journal of High Pressure Physics, 2017, 31(6): 769-777. doi: 10.11858/gywlxb.2017.06.012
Citation: DING Tie, ZHANG Xiao-Qing, YAO Xiao-Hu. Effect of Stiffener Shape on Low-Velocity Impact Behavior of Composite Stiffened Panels[J]. Chinese Journal of High Pressure Physics, 2017, 31(6): 769-777. doi: 10.11858/gywlxb.2017.06.012

筋条形状对复合材料加筋壁板低速冲击动态响应的影响

doi: 10.11858/gywlxb.2017.06.012
基金项目: 

国家自然科学基金 11472110

国家自然科学基金 11372113

国家自然科学基金 11472100

华南理工大学中央高校专项资金 2015ZP042

广东省普通高校特色创新项目 2014ktscx015

爆炸科学与技术国家重点实验室开放基金 KFJJ15-20M

详细信息
    作者简介:

    丁铁(1991—), 男,硕士研究生,主要从事复合材料与冲击动力学研究.E-mail:ctd.tie@mail.scut.edu.cn

    通讯作者:

    姚小虎(1974—), 男,教授,博士生导师,主要从事复合材料与冲击动力学研究.E-mail:yaoxh@scut.edu.cn

  • 中图分类号: O347.3;V214.8

Effect of Stiffener Shape on Low-Velocity Impact Behavior of Composite Stiffened Panels

  • 摘要: 针对复合材料加筋壁板的抗冲击问题,着重考虑筋条形状对其冲击动态响应的影响。通过局部细化的方法分别建立T型、工字型和帽型筋条的复合材料加筋壁板的有限元分析模型,采用黏结接触模拟层与层之间的界面,分析了3种筋条形状的复合材料加筋壁板在低速冲击下的动态响应和损伤情况。根据数值计算结果发现:结构的动态响应与冲击位置的刚度密切相关,T型和工字型筋条复合材料加筋壁板在冲击位置以外的区域发生翘曲;此时T型和工字型筋条的基体拉伸损伤不仅形状相似,而且损伤面积相近;蒙皮与筋条界面相邻两层的铺层角影响分层损伤的面积。

     

  • 图  层内损伤模型

    Figure  1.  Intralaminar damage model

    图  数值模拟所得冲击力时程曲线与实验数据的比较

    Figure  2.  comparison of impact force time-history between numerical and experimental results

    图  复合材料加筋壁板尺寸示意(单位:mm)

    Figure  3.  Configuration of composite stiffened panel (Unit:mm)

    图  复合材料加筋壁板模型细节

    Figure  4.  Details of composite stiffened panel model

    图  复合材料加筋壁板的冲击力时程

    Figure  5.  Impact force versus time of composite stiffened panels

    图  复合材料加筋壁板的位移时程

    Figure  6.  Displacement versus time of composite stiffened panels

    图  复合材料加筋壁板沿路径DI上点的位移

    Figure  7.  Displacements along path DI of composite stiffened panel

    图  工字型筋条复合材料加筋壁板的有限元模型

    Figure  8.  Finite element model of I-shaped stiffened panel

    图  复合材料加筋壁板蒙皮的基体拉伸损伤(1、15、17、19、20为铺层序号)

    Figure  9.  Skin's matrix tensile damage of composite stiffened panel (1, 15, 17, 19, 20 are ply numbers)

    图  10  复合材料加筋壁板筋条的基体拉伸损伤(1、2、3、5、9为铺层序号)

    Figure  10.  Stiffener's matrix tensile damage of composite stiffened panel (1, 2, 3, 5, 9 are ply numbers)

    图  11  复合材料加筋壁板蒙皮的基体拉伸损伤分布

    Figure  11.  Distribution of skin's matrix tensile damage of composite stiffened panels

    图  12  蒙皮与筋条间的分层损伤

    Figure  12.  Delamination damage between skin and stiffener

    图  13  不同复合材料加筋壁板筋条铺层之间的分层损伤对比

    Figure  13.  Comparison of delamination damage between stiffener's plies of different composite stiffened panels

    表  1  复合材料单层材料参数[12]

    Table  1.   Material properties of composite[12]

    Elastic modulus Shear modulus Poisson's ratio
    E11/(GPa) E22/(GPa) E33/(GPa) G12/(MPa) G13/(MPa) G23/(MPa) ν12 ν13 ν23
    145 10.3 12.1 5 300 5 275 3 950 0.301 0.5 0.495
    Strength Fracture energy
    XT/(MPa) XC/(MPa) YT/(MPa) YC/(MPa) S12/(MPa) G1Ct/(N/mm) G1Cc/(N/mm) G2Ct/(N/mm) G2Cc/(N/mm)
    2 000 1 600 64 290 98 12.5 12.5 1 1
    下载: 导出CSV
  • [1] ROESELER W G, SARH B, KISMARTON M U, et al.Composite structures-the first 100 years[C]//16th International Conference on Composite Materials, 2007.
    [2] CHOI H Y, CHANG F K.A model for predicting damage in graphite/epoxy laminated composites resulting from low-velocity impact[J].J Compos Mater, 1992, 26(14):2134-2169. doi: 10.1177/002199839202601408
    [3] 朱炜垚, 许希武.复合材料层合板低速冲击损伤的有限元模拟[J].复合材料学报, 2010, 27(6): 200-207. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201002862699

    ZHU W Y, XU X W.Finite element simulation of low velocity impact damage on composite laminates[J].Acta Materiae Compositae Sinica, 2010, 27(6): 200-207. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201002862699
    [4] 王一飞, 张晓晶, 汪海.复合材料层压板低速冲击响应与损伤参数关系研究[J].固体力学学报, 2013, 34(1):63-72. doi: 10.3969/j.issn.0254-7805.2013.01.009

    WANG Y F, ZHANG X J, WANG H.Energy and contact force study of composite laminate impact damage response[J].Chinese Journal of Solid Mechanics, 2013, 34(1):63-72. doi: 10.3969/j.issn.0254-7805.2013.01.009
    [5] 赵维涛, 杨其蛟, 刘炜华.复合材料加筋板低速冲击响应分析[J].沈阳航空航天大学学报, 2015, 32(3): 1-5. doi: 10.3969/j.issn.2095-1248.2015.03.001

    ZHAO W T, YANG Q J, LIU W H.Analysis on the low-velocity impact response of stiffened composite panels[J].Journal of Shenyang Aerospace University, 2015, 32(3): 1-5. doi: 10.3969/j.issn.2095-1248.2015.03.001
    [6] FOUND M S, HOWARD I C, PARAN A P.Impact perforation of thin stiffened CFRP panels[J].Compos Struct, 2000, 48(1/2/3):95-98. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC026031071
    [7] FOUND M S, HOWARD I C, PARAN A P.Impact behaviour of stiffened CFRP sections[J].Compos Struct, 1997, 39(3/4):229-235. http://www.sciencedirect.com/science/article/pii/S0263822397001177
    [8] WIGGENRAAD J F M, ZHANG X, DAVIES G A O.Impact damage prediction and failure analysis of heavily loaded, blade-stiffened composite wing panels[J].Compos Struct, 1999, 45(2):81-103. doi: 10.1016/S0263-8223(98)00132-9
    [9] HASHIN Z, ROTEM A.A fatigue failure criterion for fiber reinforced materials[J].J Compos Mater, 1973, 7(4):448-464. doi: 10.1177/002199837300700404
    [10] BENZEGGAGH M L, KENANE M.Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus[J].Compos Sci Technol, 1996, 56(4):439-449. doi: 10.1016/0266-3538(96)00005-X
    [11] GREENHALGH E, MEEKS C, CLARKE A, et al.The effect of defects on the performance of post-buckled CFRP stringer-stiffened panels[J].Compos Part A:Appl Sci Manuf, 2003, 34(7):623-633. doi: 10.1016/S1359-835X(03)00098-8
    [12] 孙晶晶, 张晓晶, 宫占峰, 等.复合材料帽型筋条脱粘的失效机理分析[J].航空学报, 2013, 34(7):1616-1626. http://d.old.wanfangdata.com.cn/Periodical/hkxb201307013

    SUN J J, ZHANG X J, GONG Z F, et al.Failure mechanism study on omega stringer debonding[J].Acta Aeronautica et Astronautica Sinica, 2013, 34(7):1616-1626. http://d.old.wanfangdata.com.cn/Periodical/hkxb201307013
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  7352
  • HTML全文浏览量:  2983
  • PDF下载量:  169
出版历程
  • 收稿日期:  2017-01-11
  • 修回日期:  2017-03-29

目录

    /

    返回文章
    返回