冲击加载下42CrMo钢的动态力学性能及其本构关系

李定远 朱志武 卢也森

李定远, 朱志武, 卢也森. 冲击加载下42CrMo钢的动态力学性能及其本构关系[J]. 高压物理学报, 2017, 31(6): 761-768. doi: 10.11858/gywlxb.2017.06.011
引用本文: 李定远, 朱志武, 卢也森. 冲击加载下42CrMo钢的动态力学性能及其本构关系[J]. 高压物理学报, 2017, 31(6): 761-768. doi: 10.11858/gywlxb.2017.06.011
LI Ding-Yuan, ZHU Zhi-Wu, LU Ye-Sen. Mechanical Properties and Constitutive Relation for 42CrMo Steel under Impact Load[J]. Chinese Journal of High Pressure Physics, 2017, 31(6): 761-768. doi: 10.11858/gywlxb.2017.06.011
Citation: LI Ding-Yuan, ZHU Zhi-Wu, LU Ye-Sen. Mechanical Properties and Constitutive Relation for 42CrMo Steel under Impact Load[J]. Chinese Journal of High Pressure Physics, 2017, 31(6): 761-768. doi: 10.11858/gywlxb.2017.06.011

冲击加载下42CrMo钢的动态力学性能及其本构关系

doi: 10.11858/gywlxb.2017.06.011
基金项目: 

国家自然科学基金 11672253

四川省应用基础研究项目 2017JY0221

详细信息
    作者简介:

    李定远(1993—), 男,博士研究生,主要从事合金材料动态本构研究.E-mail:scldy105@163.com

    通讯作者:

    朱志武(1974—), 男,博士,副教授, 主要从事材料动态本构研究.E-mail:zzw4455@163.com

  • 中图分类号: O347.1

Mechanical Properties and Constitutive Relation for 42CrMo Steel under Impact Load

  • 摘要: 车轴作为高速列车走行部中的重要部件,不可避免地需承受冲击载荷作用。为研究车轴用42CrMo钢的冲击动态力学性能,对其进行了应变率0.001~4 163 s-1范围内的压缩实验,结果显示42CrMo钢在高应变率下表现出明显的应变率效应,存在应变硬化以及一定的热软化效应。根据实验结果对Johnson-Cook模型中应变项和应变率项解耦,并引入绝热温升,得到改进的Johnson-Cook模型,改进Johnson-Cook模型能够较好地描述42CrMo钢的动态力学特性,为实际工程结构力学分析提供了参考。

     

  • 图  42CrMo准静态压缩真实应力-应变曲线

    Figure  1.  True stress-strain curves of quasi-static compression experiments of 42CrMo steel

    图  SHPB实验典型波形

    Figure  2.  Wave figure of SHPB experiments

    图  42CrMo钢冲击动态及准静态压缩真实应力-应变曲线

    Figure  3.  Impact and quasi-static compression stress-strain curves of 42CrMo steel

    图  实验与Johnonson-Cook模型结果对比

    Figure  4.  Experimental stress-strain curves and stress-strain curves calculated by Johonson-Cook model

    图  流动应力随应变率的变化

    Figure  5.  Relation of flow stress and strain rate

    图  不同应变率下绝热温升与应变的关系

    Figure  6.  Relation of temperature rise and plastic strain at different strain rates

    图  ∂(ΔT)/∂ε与应变率的关系

    Figure  7.  Relation of ∂(ΔT)/∂ε and strain rate

    图  改进Johnson-Cook模型计算所得应力-应变曲线与实验结果的对比

    Figure  8.  Comparison of stress-strain curves calculated by improved Johnson-Cook model with experimental results

    表  1  动态压缩实验后试样尺寸变化

    Table  1.   Longitudinal size and strain variations of specimens after dynamic compression experiments

    Strain rate/(s-1) Longitudinal size/(mm) Longitudinal strain/(%)
    0 4.00 0
    1 704 3.64 9
    2 525 3.12 22
    3 105 2.72 32
    4 163 2.36 41
    下载: 导出CSV

    表  2  Johnson-Cook模型参数

    Table  2.   Parameters' value of Johnson-Cook model

    A/(MPa) B/(MPa) n C
    538.09 424.70 0.303 57 0.027 86
    下载: 导出CSV

    表  3  改进Johnson-Cook模型参数

    Table  3.   Parameters' value of improved Johnson-Cook model

    A/(MPa) B/(MPa) C/(Pa) D/(K) E/(K) n m
    607.226 1 235.781 92.89 0.244×10-4 176.6 0.494 0.489
    下载: 导出CSV
  • [1] 刘鑫贵, 吴毅, 项彬, 等.动车组车轴标准研究及其技术发展展望[J].铁道机车车辆, 2014, 34(6):18-22. doi: 10.3969/j.issn.1008-7842.2014.06.04

    LIU X G, WU Y, XIANG B, et al.Standard study and technical development prospect of emu axle[J].Railway Locomotive & Car, 2014, 34(6):18-22. doi: 10.3969/j.issn.1008-7842.2014.06.04
    [2] 赵永翔, 杨冰, 孙亚芳, 等.LZ50车轴钢的概率循环本构模型[J].机械工程学报, 2004, 40(9):48-53. doi: 10.3321/j.issn:0577-6686.2004.09.010

    ZHAO Y X, YANG B, SUN Y F, et al.Probability-based cyclic constitution models for LZ50 axle steel[J].Chinese Journal of Mechanical Engineering, 2004, 40(9):48-53. doi: 10.3321/j.issn:0577-6686.2004.09.010
    [3] YANG B, ZHAO Y X.Experimental research on dominant effective short fatigue crack behavior for railway LZ50 axle steel[J].Int J Fatigue, 2012, 35(1):71-78. doi: 10.1016/j.ijfatigue.2010.11.012
    [4] QUAN G, LUO G, MAO A, et al.Evaluation of varying ductile fracture criteria for 42CrMo steel by compressions at different temperatures and strain rates[J].Sci World J, 2014: 579328. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000003718094
    [5] KUNC R, PREBIL I.Low-cycle fatigue properties of steel 42CrMo4[J].Mater Sci Eng A, 2003, 345(1):278-285. http://www.sciencedirect.com/science/article/pii/S0921509302004641
    [6] 孟扬, 梁益龙.不同成分EA4T车轴钢的高周疲劳性能[J].机械工程材料, 2010, 34(4):55-57. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201000092490

    MENG Y, LIANG Y L.High cycle fatigue property of EA4T axle steel with different components[J].Materials for Mechanical Engineering, 2010, 34(4):55-57. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201000092490
    [7] VARFOLOMEEV I, LUKE M, BURDACK M.Effect of specimen geometry on fatigue crack growth rates for the railway axle material EA4T[J].Eng Fract Mech, 2011, 78(5):742-753. doi: 10.1016/j.engfracmech.2010.11.011
    [8] LINHART V, ČERNÝ I.An effect of strength of railway axle steels on fatigue resistance under press fit[J].Eng Fract Mech, 2011, 78(6):731-741. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d656a1ba7efa1d67e75877804bf56778
    [9] WEERTMAN J, WEERTMAN J R.Elementary dislocation theory[M].Oxford:Oxford University Press, 1992:72-79.
    [10] GUO W G, NEMAT-NASSER S.Flow stress of Nitronic-50 stainless steel over a wide range of strain rates and temperatures[J].Mech Mater, 2006, 38(11):1090-1103. doi: 10.1016/j.mechmat.2006.01.004
    [11] SHI D Q, YANG X G, WANG Y R.Constitutive modeling of hardening and creep response of a nickel-based superalloy udimet 720Li[J].Chinese Journal of Aeronautics, 2003, 16(3):187-192. doi: 10.1016/S1000-9361(11)60182-9
    [12] JOHNSON G R, COOK W H.A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]//Proceedings of the 7th International Symposium on Ballistics, 1983: 541-547.
    [13] 刘旭红, 黄西成, 陈裕泽, 等.强动载荷下金属材料塑性变形本构模型评述[J].力学进展, 2007, 37(3):361-374. doi: 10.3321/j.issn:1000-0992.2007.03.004

    LIU X H, HUANG X C, CHEN Y Z, et al.A review on constitutive models for plastic deformation of metal materials under dynamic loading[J].Advances in Mechanics, 2007, 37(3):361-374. doi: 10.3321/j.issn:1000-0992.2007.03.004
    [14] 彭建祥.钽的本构关系研究[D].绵阳: 中国工程物理研究院, 2001. http://cdmd.cnki.com.cn/Article/CDMD-82818-2001004177.htm
    [15] RULE W K, JONES S E.A revised form for the Johnson-Cook strength model[J].Int J Impact Eng, 1998, 21(8):609-624. doi: 10.1016/S0734-743X(97)00081-X
    [16] KAPOOR R, NEMAT-NASSER S.Determination of temperature rise during high strain rate deformation[J].Mech Mater, 1998, 27(1):1-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7c17e09746f2eec0386fd35b3d3e02c8
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  8175
  • HTML全文浏览量:  3396
  • PDF下载量:  284
出版历程
  • 收稿日期:  2017-01-11
  • 修回日期:  2017-03-20

目录

    /

    返回文章
    返回