Comparative Analysis of 3 Constitutive Models for 93 Tungsten Alloy
-
摘要: 在温度范围296~1 273 K、应变率范围0.000 5~6 000 s-1内, 对93钨合金材料(93%W-4.9%Ni-2.1%Fe)的力学行为进行了系统研究。实验结果表明:钨合金的塑性流动应力对温度和应变率非常敏感,它随温度的降低和应变率的增加而提高;真实塑性应变达到0.6时未出现剪切破坏。针对实验得到的应力-应变关系,分别进行了两种唯象本构模型(JC本构模型和KHL本构模型)和一种基于物理概念的本构模型(PB本构模型)的流动应力拟合。通过误差分析和应变率阶跃实验,对这3种本构模型的预测效果的精度进行了分析和评价。Abstract: In this research, we carried out a systematic study of the mechanical behaviors of the 93 tungsten alloy (93%W-4.9%Ni-2.1%Fe) with a temperature range of 296-1 273 K and a strain rate range of 0.000 5-6 000 s-1.The results demonstrate that the flow stress is highly dependent on the temperature and the strain rate:the flow stress increases with the decrease of temperature and the increase of strain rate, and the shear failure does not occur when the true plastic strain is up to 0.6.Then we introduced and established 3 constitutive models, including two phenomenological constitutive models, JC model and KHL model and one physically-based constitutive model, to fit the stress-strain relationship through a procedure of regression analysis and constrained optimization.Finally, we evaluated the fitted results of the 3 constitutive models through a fitting error analysis and a specific strain-rate jump experiment.
-
Key words:
- tungsten alloy /
- plastic flow stress /
- constitutive model
-
表 1 JC模型参数
Table 1. Determined values of JC model parameters
A/(MPa) B/(MPa) n C m 600.8 1 200 0.494 4 0.059 0 0.820 3 表 2 KHL模型参数
Table 2. Determined values of KHL model parameters
A/(MPa) B/(MPa) n1 n0 C m 264.5 523.4 2.296 0.299 6 0.113 4 1.063 表 3 PB模型参数值
Table 3. Determined values of PB model parameters
a/(MPa) n σ0/(MPa) (k/G0)/(K-1) ${{{\dot \varepsilon }_0}}$/(s-1) p q 1 054.4 0.263 5 3 061.4 3.89×10-5 2×1010 0.5 1.5 -
[1] 范景莲, 刘涛, 成会朝, 等.钨合金在高速加载条件下的动态力学性能和失效机理[J].稀有金属材料与工程, 2006, 35(6):841-844. doi: 10.3321/j.issn:1002-185X.2006.06.001FAN J L, LIU T, CHENG H C, et al.Dynamic properties and failure mechanism of tungsten heavy alloy under high-speed loading[J].Rare Metal Materials and Engineering, 2006, 35(6):841-844. doi: 10.3321/j.issn:1002-185X.2006.06.001 [2] 魏志刚, 胡时胜, 李永池, 等.微细观结构对预扭转钨合金材料绝热剪切的影响[J].弹道学报, 1999, 11(1):15-19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199900042055WEI Z G, HU S S, LI Y C, et al.Structural influence on the adiabatic shearing failure of pre-torqued tungsten heavy alloy[J].Journal of Ballistics, 1999, 11(1):15-19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199900042055 [3] KIM D S, NEMAT-NASSER S, ISAACS J B, et al.Adiabatic shear band in WHA in high-strain-rate compression[J].Mech Mater, 1998, 28(1):227-236. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=78c0a5aa25b27f88859bed95e1323e56 [4] YADAV S, RAMESH K T.The mechanical properties of tungsten-based composites at very high strain rates[J].Mater Sci Eng A, 1995, 203(1/2):140-153. http://www.sciencedirect.com/science/article/pii/0921509395098658 [5] COATES R S, RAMESH K T.The rate-dependent deformation of a tungsten heavy alloy[J].Mater Sci Eng A, 1991, 145(2):159-166. doi: 10.1016/0921-5093(91)90245-I [6] LEE W S, CHIOU S T.The influence of loading rate on shear deformation behaviour of tungsten composite[J].Compos Part B Eng, 1996, 27(2):193-200. doi: 10.1016/1359-8368(95)00051-8 [7] LEE W S, XIEA G L, LIN C F.The strain rate and temperature dependence of the dynamic impact response of tungsten composite[J].Mater Sci Eng A, 1998, 257(2):256-267. doi: 10.1016/S0921-5093(98)00852-1 [8] JOHNSON G R, COOK W H.A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]//Proceedings of the 7th International Symposium on Ballistics.AIP, 1983. [9] KHAN A S, LIANG R.Behaviors of three BCC metal over a wide range of strain rates and temperatures:experiments and modeling[J].Int J Plasticity, 1999, 15(10):1089-1109. doi: 10.1016/S0749-6419(99)00030-3 [10] KHAN A S, SUH Y S, KAZMI R.Quasi-static and dynamic loading responses and constitutive modeling of titanium alloys[J].Int J Plasticity, 2004, 20(12):2233-2248. doi: 10.1016/j.ijplas.2003.06.005 [11] NEMAT-NASSER S, GUO W.Flow stress of commercially pure niobium over a broad range of temperatures and strain rates[J].Mater Sci Eng A, 2000, 284(1):202-210. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1f51f05b708b795911767017d4b0e6e9 [12] NEMAT-NASSER S, GUO W G.Thermomechanical response of DH-36 structural steel over a wide range of strain rates and temperatures[J].Mech Mater, 2003, 35(11):1023-1047. doi: 10.1016/S0167-6636(02)00323-X [13] 李玉龙, 索涛, 郭伟国, 等.确定材料在高温高应变率下动态性能的Hopkinson杆系统[J].爆炸与冲击, 2005, 25(6):487-492. doi: 10.3321/j.issn:1001-1455.2005.06.002LI Y L, SUO T, GUO W G, et al.Determination of dynamic behavior of materials at elevated temperatures and high strain rates using Hopkinson bar[J].Explosion and Shock Waves, 2005, 25(6):487-492. doi: 10.3321/j.issn:1001-1455.2005.06.002 [14] LI Y, GUO Y, HU H, et al.A critical assessment of high-temperature dynamic mechanical testing of metals[J].Int J Impact Eng, 2009, 36(2):177-184. doi: 10.1016/j.ijimpeng.2008.05.004 [15] KAPOOR R, NEMAT-NASSER S.Determination of temperature rise during high strain rate deformation[J].Mech Mater, 1998, 27(1):1-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7c17e09746f2eec0386fd35b3d3e02c8 [16] XU Z, HUANG F.Thermomechanical behavior and constitutive modeling of tungsten-based composite over wide temperature and strain rate ranges[J].Int J Plasticity, 2013, 40(1):163-184. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4a31669ec7b7a87b9c1b72c76c7f39a2