A Simplified Model for Long Rod of Ultra-High Speed Perforation onto Ceramic/Metal Target
-
摘要: 基于合理简化假设建立快捷实用的工程分析模型是研究复合靶板抗弹体冲击能力的重要方法。已有弹体冲击陶瓷/金属复合靶板理论模型的形式及计算过程复杂,并且缺少弹体超高速(弹体初速大于1 500 m/s)贯穿复合靶板的实验验证。综合考虑弹体侵彻破碎陶瓷锥体过程中破碎陶瓷强度的下降、弹体初速对破碎陶瓷锥半锥角取值的影响,以及金属背板挠曲变形对弹体侵彻破碎陶瓷锥的影响,基于半流体动力学Alekseevskii-Tate(A-T)模型建立了预测弹体超高速贯穿陶瓷/金属复合靶板残余速度的简化分析模型。通过与实验数据以及基于LS-DYNA有限元分析软件开展的钨合金长杆弹(初速1 800~2 600 m/s)贯穿Al2O3陶瓷/RHA钢复合靶板数值模拟结果对比,验证了简化分析模型、数值模型及其相应参数的正确性和适用性。进一步基于简化模型,在总厚度或总面密度一定的条件下,讨论了4种陶瓷面板(Al2O3、AlN、SiC、B4C)和两种金属背板(RHA钢、铝)复合靶板的弹道性能。Abstract: A quick and practical engineering analysis model based on the reasonably simplified hypothesis is an important means to study the ballistic performance of the ceramic/metal targets.The available detailed theoretical models have to carry out complex calculation and rarely are made comparisons with the residual velocity of the projectile perforating ceramic/metal targets under the condition of ultra-high speed (with the projectile muzzle velocity greater than 1 500 m/s).In this study, considering the decrease of the strength of fractured ceramic during the penetration of the projectile into fractured conical ceramic, the effect of the projectile's initial velocity on the value of the half conical angle, and the influence of the metal plate's deflection on the long rod of ultra-high speed penetrating the fractured conical ceramic, based on the semi-fluid dynamics Alekseevskii-Tate (A-T) model, a simplified model predicting the residual velocity of the long rod of ultra-high speed perforating ceramic/metal target was proposed.By comparing with the experiment data and the simulation results of the tungsten long rod (1 800-2 600 m/s) perforating Al2O3/RHA steel target carried out on the LS-DYNA finite element analysis software, the correctness and applicability of the proposed simplified model, the numerical model and its corresponding parameters were validated.Furthermore, based on the simplified model, the ballistic performance of composite targets consisting of 4 ceramic facing plates (Al2O3, AlN, SiC, B4C) and 2 metallic backing plates (RHA steel, aluminum), under the condition of certain thickness and certain areal density was discussed.
-
Key words:
- long rod /
- ultra-high speed /
- perforation /
- ceramic/metal /
- model
-
Material ρ/(kg/m3) G/(GPa) A/(GPa) B/(GPa) n c m TM/(K) TR/(K) $ {{\dot \varepsilon }_0}$/(s-1) C/(m/s) s1 s2 s3 γ0 Tungsten alloy 17 550 137 1.51 0.177 0.12 0.016 1.0 1 498 294 10-6 3 850 1.44 0 0 1.58 RHA steel 7 850 77 0.95 0.611 0.26 0.014 1.0 1 703 294 10-6 4 578 1.33 0 0 1.67 Material ρ/
(kg/m3)G/
(GPa)A/
(GPa)B/
(GPa)c M N $ {{\dot \varepsilon }_0}$/
(s-1)Tmax/
(GPa)σHEL/
(GPa)pHEL/
(GPa)D1 D2 K1/
(GPa)K2/
(GPa)K3/
(GPa)FS AD97 3 780 90.16 1.0 0.31 0 0.6 0.6 10-6 0.2 5.3 2.9 0.02 0.83 228.6 191.4 111.5 1.0 表 3 弹体残余速度及残余长度的数值模拟结果与实验数据[16]对比
Table 3. Comparison of residual velocity and length of projectile in simulations with experiment data[16]
Exp. No. v0/
(m/s)State of ceramic plate Residual velocity/(m/s) Error of residual velocity/(%) Residual length/(mm) Error of residual length/(%) Exp. Sim. Exp. Sim. 1 2 667 Confined -(a) 2 597.0 - - 52.1 - 2 2 682 Confined 2 569 2 608.0 1.52 53.8 48.6 9.66 3 1 862 Confined 1 676 1 739.7 3.80 41.6 41.9 0.72 4 1 863 Confined 1 674 1 740.0 3.94 40.7 42.8 5.16 5 2 681 Unconfined 2 597 2 613.3 0.63 58.3 55.2 5.32 6 2 669 Unconfined 2 575 2 603.3 1.09 41.8(b) 56.3 (b) 7 1 831 Unconfined 1 668 1 722.6 3.27 46.7 48.5 3.85 8 2 691 Unconfined 2 586 2 618.1 1.24 58.2 53.6 7.90 Note:(a) No image was found on film;
(b) A relatively high yaw gave a shorter residual length[16]. -
[1] FLORENCE A L.Interaction of projectiles and composite armour: Part Ⅱ: AMMRG-CR-69-15[R]. Menlo Park, California, USA: Stanford Research Institute, 1969. [2] WOODWARD R L.A simple one-dimensional approach to modeling ceramic composite armour defeat[J]. Int J Impact Eng, 1990, 9(4):455-474. doi: 10.1016/0734-743X(90)90035-T [3] REIJER P C D, DELFT T U.Impact on ceramic faced armour[M]. Aerospace Engineering, 1991. [4] ZAERA R, SÁNCHEZ-GÁLVEZ V.Analytical modeling of normal and oblique ballistic impact on ceramic/metal lightweight armours[J]. Int J Impact Eng, 1998, 21(3):133-148. doi: 10.1016/S0734-743X(97)00035-3 [5] ALEKSEEVSKⅡ V P.Penetration of a rod into a target at high velocity[J]. Combust Explo Shock+, 1966, 2(2):63-66. doi: 10.1007-BF00749237/ [6] TATE A.A theory for the deceleration of long rods after impact[J]. J Mech Phys Solids, 1967, 15(6):387-399. doi: 10.1016/0022-5096(67)90010-5 [7] BEN-DOR G, DUBINSKY A, ELPERIN T.Improved Florence model and optimization of two-component armor against single impact or two impacts[J]. Compos Struct, 2009, 88(1):158-165. doi: 10.1016/j.compstruct.2008.02.015 [8] FELLOWS N A, BARTON P C.Development of impact model for ceramic-faced semi-infinite armour[J]. Int J Impact Eng, 1999, 22(8):793-811. doi: 10.1016/S0734-743X(99)00017-2 [9] FELI S, AALEAGHA M E A, AHMADI Z.A new analytical model of normal penetration of projectiles into the light-weight ceramic-metal targets[J]. Int J Impact Eng, 2010, 37(5):561-567. doi: 10.1016/j.ijimpeng.2009.10.006 [10] WILSON D, HETHERINGTON J G.Analysis of ballistic impact on ceramic faced armour using high speed photography[C]//Proceedings Lightweight Armour System Symposium.Royal Military College of Science, 1995: 123-130. [11] SERJOUEI A, CHI R Q, SRIDHAR I, et al.Empirical ballistic limit velocity model for bi-layer ceramic-metal armor[J]. Int J Prot Struct, 2015, 6(3):509-527. doi: 10.1260/2041-4196.6.3.509 [12] CHI R Q, SERJOUEI A, SRIDHAR I, et, al.Ballistic impact on bi-layer alumina/aluminum armour:a semi-analytical approach[J]. Int J Impact Eng, 2013, 52:37-46. doi: 10.1016/j.ijimpeng.2012.10.001 [13] 杜忠华.动能弹侵彻陶瓷复合装甲机理[D].南京: 南京理工大学, 2002. http://cdmd.cnki.com.cn/Article/CDMD-10288-2003104675.htmDU Z H.Mechanism of kinetic energy projectile penetrating ceramic composite armour[D]. Nanjing: Nanjing University of Science and Technology, 2002. http://cdmd.cnki.com.cn/Article/CDMD-10288-2003104675.htm [14] 张晓晴, 杨桂通, 黄小清.陶瓷/金属复合靶板受可变形弹体撞击的理论分析模型[J].应用数学和力学, 2006, 27(3):260-266. doi: 10.3321/j.issn:1000-0887.2006.03.002ZHANG X Q, YANG G T, HUANG X Q.Analytical model of ceramic/metal armour impacted by deformable projectile[J]. Applied Mathematics and Mechanics, 2006, 27(3):260-266. doi: 10.3321/j.issn:1000-0887.2006.03.002 [15] 申志强, 蒋志刚, 曾首义.陶瓷金属复合靶板工程模型及耗能分析[J].工程力学, 2008, 25(9):229-234. http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200809038.htmSHEN Z Q, JIANG Z G, ZENG S Y.An engineering model and energy dissipation analysis of ceramic/metal composite target[J]. Engineering Mechanics, 2008, 25(9):229-234. http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200809038.htm [16] LYNCH N J, BLESS S J, CULLIS I G, et al.The influence of confinement on the penetration of ceramic targets by KE projectiles at 1.8 and 2.6 km/s[J]. Int J Impact Eng, 2006, 33:390-401. doi: 10.1016/j.ijimpeng.2006.09.029 [17] WILKINS M L.Mechanics of penetration and perforation[J]. Int J Impact Eng, 1978, 16(11):793-807. doi: 10.1016-0020-7225(78)90066-6/ [18] 蒋志刚, 申志强, 曾首义, 等.穿甲子弹侵彻陶瓷/钢复合靶板试验研究[J].弹道学报, 2007, 19(4):38-42. doi: 10.3969/j.issn.1004-499X.2007.04.011JIANG Z G, SHEN Z Q, ZENG S Y, et al.An experimental study on ceramic/mild steel targets against APP[J]. Journal of Ballistics, 2007, 19(4):38-42. doi: 10.3969/j.issn.1004-499X.2007.04.011 [19] WIERZBICKI T.Petalling of plates under explosive and impact loading[J]. Int J Impact Eng, 1999, 22(9):935-954. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4ca255fc245f7900a0ee51f5edecf4c6 [20] 楼建锋, 王政, 洪滔, 等.钨合金杆侵彻半无限厚铝合金靶的数值研究[J].高压物理学报, 2009, 23(1):65-69. doi: 10.3969/j.issn.1000-5773.2009.01.011LOU J F, WANG Z, HONG T, et al.Numerical study on penetration of semi-infinite aluminum-alloy targets by tungsten-alloy rod[J]. Chinese Journal of High Pressure Physics, 2009, 23(1):65-69. doi: 10.3969/j.issn.1000-5773.2009.01.011 [21] FERNÁNDEZ-FDZ D, ZAERA R, FERNÁNDEZ-SÁEZ J.A constitutive equation for ceramic materials used in lightweight armors[J]. Comput Struct, 2011, 89(23/24):2316-2324. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=07315cdb0c501a08bd7a31939deda752 [22] 宋顺成, 王军, 王建军.钨合金长杆弹侵彻陶瓷层合板的数值模拟[J].爆炸与冲击, 2005, 25(2):102-106. doi: 10.3321/j.issn:1001-1455.2005.02.002SONG S C, WANG J, WANG J J.Numerical simulation for penetration of ceramic composite plate by long-rod projectile of tungsten alloy[J]. Explosion and Shock Waves, 2005, 25(2):102-106. doi: 10.3321/j.issn:1001-1455.2005.02.002 [23] STEINBERG D L.Equation of state and strength properties of selected materials: UCRL-MA-106439[R]. Livermore: Lawrence Livermore National Laboratory, 1996. [24] HOLMQUIST T J, RAJENDRAN A M, TEMPLETON D W, et al.A ceramic armor material database: TARDEC Technical Report 13754[R]. Warren, Michigan: US Army Tank Automotive Research Development and Engineering Center, 1999. [25] CRONIN D S, BUI K, KAUFMANN C, et al.Implementation and validation of the Johnson-Holmquist ceramic material model in LS-DYNA[C]//4th European LS-DYNA Users Conference, 2003. https://www.dynamore.de/en/downloads/papers/03-conference/material/implementation-and-validation-of-the-johnson/view [26] 吴克刚.Al2O3陶瓷板和装甲钢板抗长杆动能弹侵彻效应的实验与数值模拟研究[D].长沙: 国防科学技术大学, 2004. http://cdmd.cnki.com.cn/Article/CDMD-90002-2005143776.htmWU K G.Experimental and numerical study on the penetration effect of Al2O3 ceramic plate and armor plate against long rod kinetic energy projectile[D]. Changsha: National Defense Science and Technology University, 2004. http://cdmd.cnki.com.cn/Article/CDMD-90002-2005143776.htm [27] 翟阳修, 吴昊, 方秦.基于A-T模型的长杆弹超高速侵彻陶瓷靶体强度分析[J].振动与冲击, 2017, 36(3):183-188. http://d.old.wanfangdata.com.cn/Periodical/zdycj201703029ZHAI Y X, WU H, FANG Q.Strength analysis of ceramic targets against hypervelocity penetration of long-rod projectile based on A-T model[J]. Journal of Vibration and Shock, 2017, 36(3):183-188. http://d.old.wanfangdata.com.cn/Periodical/zdycj201703029 [28] WANG B, LU G.On the optimisation of two-component plates against ballistic impact[J]. J Mater Process Tech, 1996, 57(1/2):141-145. http://www.sciencedirect.com/science/article/pii/0924013695020500 [29] BEN-DOR G, DUBINSKY A, ELPERIN T.Improved Florence model and optimisation of two-component armor against single impact or two impacts[J]. Compos Struct, 2009, 88(1):158-165. doi: 10.1016/j.compstruct.2008.02.015 [30] HETHERINGTON J G.The optimisation of two component composite armors[J]. Int J Impact Eng, 1992, 12(3):409-414. doi: 10.1016/0734-743X(92)90145-J