一种长杆弹超高速贯穿陶瓷/金属复合靶板的简化模型

翟阳修 吴昊 方秦

翟阳修, 吴昊, 方秦. 一种长杆弹超高速贯穿陶瓷/金属复合靶板的简化模型[J]. 高压物理学报, 2017, 31(6): 742-752. doi: 10.11858/gywlxb.2017.06.009
引用本文: 翟阳修, 吴昊, 方秦. 一种长杆弹超高速贯穿陶瓷/金属复合靶板的简化模型[J]. 高压物理学报, 2017, 31(6): 742-752. doi: 10.11858/gywlxb.2017.06.009
ZHAI Yang-Xiu, WU Hao, FANG Qin. A Simplified Model for Long Rod of Ultra-High Speed Perforation onto Ceramic/Metal Target[J]. Chinese Journal of High Pressure Physics, 2017, 31(6): 742-752. doi: 10.11858/gywlxb.2017.06.009
Citation: ZHAI Yang-Xiu, WU Hao, FANG Qin. A Simplified Model for Long Rod of Ultra-High Speed Perforation onto Ceramic/Metal Target[J]. Chinese Journal of High Pressure Physics, 2017, 31(6): 742-752. doi: 10.11858/gywlxb.2017.06.009

一种长杆弹超高速贯穿陶瓷/金属复合靶板的简化模型

doi: 10.11858/gywlxb.2017.06.009
基金项目: 

国家重点研发计划 2016YFC0305200

国家自然科学基金 51522813

详细信息
    作者简介:

    翟阳修(1991—), 男,硕士研究生,主要从事陶瓷靶体抗侵彻性能研究.E-mail:zhaiyx0418@163.com

    通讯作者:

    吴昊(1981—), 男,副教授,博士生导师,主要从事冲击动力学研究.E-mail:abrahamhao@126.com

  • 中图分类号: O346

A Simplified Model for Long Rod of Ultra-High Speed Perforation onto Ceramic/Metal Target

  • 摘要: 基于合理简化假设建立快捷实用的工程分析模型是研究复合靶板抗弹体冲击能力的重要方法。已有弹体冲击陶瓷/金属复合靶板理论模型的形式及计算过程复杂,并且缺少弹体超高速(弹体初速大于1 500 m/s)贯穿复合靶板的实验验证。综合考虑弹体侵彻破碎陶瓷锥体过程中破碎陶瓷强度的下降、弹体初速对破碎陶瓷锥半锥角取值的影响,以及金属背板挠曲变形对弹体侵彻破碎陶瓷锥的影响,基于半流体动力学Alekseevskii-Tate(A-T)模型建立了预测弹体超高速贯穿陶瓷/金属复合靶板残余速度的简化分析模型。通过与实验数据以及基于LS-DYNA有限元分析软件开展的钨合金长杆弹(初速1 800~2 600 m/s)贯穿Al2O3陶瓷/RHA钢复合靶板数值模拟结果对比,验证了简化分析模型、数值模型及其相应参数的正确性和适用性。进一步基于简化模型,在总厚度或总面密度一定的条件下,讨论了4种陶瓷面板(Al2O3、AlN、SiC、B4C)和两种金属背板(RHA钢、铝)复合靶板的弹道性能。

     

  • 图  长杆弹超高速贯穿陶瓷/金属复合靶板简化模型示意

    Figure  1.  Schematic of simplified model for long rod perforating ceramic/metal target at ultra-high speed

    图  弹靶有限元模型

    Figure  2.  Finite element model of projectile and targets

    图  长杆弹(v0=2 681 m/s)贯穿复合靶板0~45 μs内的弹靶损伤云图及弹头位置

    Figure  3.  Numerical damage image and position of projectile nose for long rod (v0=2 681 m/s) perforating ceramic/metal targets in 0-45 μs

    图  0~100 μs内弹头、弹尾位置的数值模拟结果与实验数据[16]对比

    Figure  4.  Comparison of positions of projectile nose and tail in simulations with experiment data[16] in 0-100 μs

    图  理论模型计算结果与实验数据和数值模拟结果对比

    Figure  5.  Comparison of calculation results of theoretical model with simulation and experiment data

    图  复合靶板总厚度一定时无量纲化残余速度与陶瓷面板厚度的关系(实线:后覆RHA钢;虚线:后覆金属铝)

    Figure  6.  Dependence curve of dimensionless residual velocity on ceramic plate's thickness for constant thickness of ceramic/metal targets (Solid line:backed by RHA steel; Dotted line:backed by aluminum)

    图  复合靶板总面密度一定时无量纲化残余速度与陶瓷面板面密度的关系(实线:后覆RHA钢;虚线:后覆金属铝)

    Figure  7.  Dependence curve of dimensionless residual velocity on areal density of ceramic plate for constant areal density of ceramic/metal targets (Solid line:backed by RHA steel; Dotted line:backed by aluminum)

    表  1  钨合金和RHA钢的模型参数[16, 20-23]

    Table  1.   Material model constants for tungsten alloy and RHA steel in simulations[16, 20-23]

    Material ρ/(kg/m3) G/(GPa) A/(GPa) B/(GPa) n c m TM/(K) TR/(K) $ {{\dot \varepsilon }_0}$/(s-1) C/(m/s) s1 s2 s3 γ0
    Tungsten alloy 17 550 137 1.51 0.177 0.12 0.016 1.0 1 498 294 10-6 3 850 1.44 0 0 1.58
    RHA steel 7 850 77 0.95 0.611 0.26 0.014 1.0 1 703 294 10-6 4 578 1.33 0 0 1.67
    下载: 导出CSV

    表  2  Al2O3陶瓷JH-2本构模型参数[24-26]

    Table  2.   JH-2 constitutive model constants for Al2O3 in simulations[24-26]

    Material ρ/
    (kg/m3)
    G/
    (GPa)
    A/
    (GPa)
    B/
    (GPa)
    c M N $ {{\dot \varepsilon }_0}$/
    (s-1)
    Tmax/
    (GPa)
    σHEL/
    (GPa)
    pHEL/
    (GPa)
    D1 D2 K1/
    (GPa)
    K2/
    (GPa)
    K3/
    (GPa)
    FS
    AD97 3 780 90.16 1.0 0.31 0 0.6 0.6 10-6 0.2 5.3 2.9 0.02 0.83 228.6 191.4 111.5 1.0
    下载: 导出CSV

    表  3  弹体残余速度及残余长度的数值模拟结果与实验数据[16]对比

    Table  3.   Comparison of residual velocity and length of projectile in simulations with experiment data[16]

    Exp. No. v0/
    (m/s)
    State of ceramic plate Residual velocity/(m/s) Error of residual velocity/(%) Residual length/(mm) Error of residual length/(%)
    Exp. Sim. Exp. Sim.
    1 2 667 Confined -(a) 2 597.0 - - 52.1 -
    2 2 682 Confined 2 569 2 608.0 1.52 53.8 48.6 9.66
    3 1 862 Confined 1 676 1 739.7 3.80 41.6 41.9 0.72
    4 1 863 Confined 1 674 1 740.0 3.94 40.7 42.8 5.16
    5 2 681 Unconfined 2 597 2 613.3 0.63 58.3 55.2 5.32
    6 2 669 Unconfined 2 575 2 603.3 1.09 41.8(b) 56.3 (b)
    7 1 831 Unconfined 1 668 1 722.6 3.27 46.7 48.5 3.85
    8 2 691 Unconfined 2 586 2 618.1 1.24 58.2 53.6 7.90
    Note:(a) No image was found on film;
         (b) A relatively high yaw gave a shorter residual length[16].
    下载: 导出CSV

    表  4  陶瓷和金属材料计算参数[16, 23, 27]

    Table  4.   Calculation parameters of ceramic and metal materials[16, 23, 27]

    Material Density/(kg/m3) Rt/(GPa)
    Al2O3 3 780 6.50
    AlN 3 230 7.04
    SiC 3 150 8.89
    B4C 2 500 6.25
    Aluminum 2 700 1.03
    下载: 导出CSV
  • [1] FLORENCE A L.Interaction of projectiles and composite armour: Part Ⅱ: AMMRG-CR-69-15[R]. Menlo Park, California, USA: Stanford Research Institute, 1969.
    [2] WOODWARD R L.A simple one-dimensional approach to modeling ceramic composite armour defeat[J]. Int J Impact Eng, 1990, 9(4):455-474. doi: 10.1016/0734-743X(90)90035-T
    [3] REIJER P C D, DELFT T U.Impact on ceramic faced armour[M]. Aerospace Engineering, 1991.
    [4] ZAERA R, SÁNCHEZ-GÁLVEZ V.Analytical modeling of normal and oblique ballistic impact on ceramic/metal lightweight armours[J]. Int J Impact Eng, 1998, 21(3):133-148. doi: 10.1016/S0734-743X(97)00035-3
    [5] ALEKSEEVSKⅡ V P.Penetration of a rod into a target at high velocity[J]. Combust Explo Shock+, 1966, 2(2):63-66. doi: 10.1007-BF00749237/
    [6] TATE A.A theory for the deceleration of long rods after impact[J]. J Mech Phys Solids, 1967, 15(6):387-399. doi: 10.1016/0022-5096(67)90010-5
    [7] BEN-DOR G, DUBINSKY A, ELPERIN T.Improved Florence model and optimization of two-component armor against single impact or two impacts[J]. Compos Struct, 2009, 88(1):158-165. doi: 10.1016/j.compstruct.2008.02.015
    [8] FELLOWS N A, BARTON P C.Development of impact model for ceramic-faced semi-infinite armour[J]. Int J Impact Eng, 1999, 22(8):793-811. doi: 10.1016/S0734-743X(99)00017-2
    [9] FELI S, AALEAGHA M E A, AHMADI Z.A new analytical model of normal penetration of projectiles into the light-weight ceramic-metal targets[J]. Int J Impact Eng, 2010, 37(5):561-567. doi: 10.1016/j.ijimpeng.2009.10.006
    [10] WILSON D, HETHERINGTON J G.Analysis of ballistic impact on ceramic faced armour using high speed photography[C]//Proceedings Lightweight Armour System Symposium.Royal Military College of Science, 1995: 123-130.
    [11] SERJOUEI A, CHI R Q, SRIDHAR I, et al.Empirical ballistic limit velocity model for bi-layer ceramic-metal armor[J]. Int J Prot Struct, 2015, 6(3):509-527. doi: 10.1260/2041-4196.6.3.509
    [12] CHI R Q, SERJOUEI A, SRIDHAR I, et, al.Ballistic impact on bi-layer alumina/aluminum armour:a semi-analytical approach[J]. Int J Impact Eng, 2013, 52:37-46. doi: 10.1016/j.ijimpeng.2012.10.001
    [13] 杜忠华.动能弹侵彻陶瓷复合装甲机理[D].南京: 南京理工大学, 2002. http://cdmd.cnki.com.cn/Article/CDMD-10288-2003104675.htm

    DU Z H.Mechanism of kinetic energy projectile penetrating ceramic composite armour[D]. Nanjing: Nanjing University of Science and Technology, 2002. http://cdmd.cnki.com.cn/Article/CDMD-10288-2003104675.htm
    [14] 张晓晴, 杨桂通, 黄小清.陶瓷/金属复合靶板受可变形弹体撞击的理论分析模型[J].应用数学和力学, 2006, 27(3):260-266. doi: 10.3321/j.issn:1000-0887.2006.03.002

    ZHANG X Q, YANG G T, HUANG X Q.Analytical model of ceramic/metal armour impacted by deformable projectile[J]. Applied Mathematics and Mechanics, 2006, 27(3):260-266. doi: 10.3321/j.issn:1000-0887.2006.03.002
    [15] 申志强, 蒋志刚, 曾首义.陶瓷金属复合靶板工程模型及耗能分析[J].工程力学, 2008, 25(9):229-234. http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200809038.htm

    SHEN Z Q, JIANG Z G, ZENG S Y.An engineering model and energy dissipation analysis of ceramic/metal composite target[J]. Engineering Mechanics, 2008, 25(9):229-234. http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200809038.htm
    [16] LYNCH N J, BLESS S J, CULLIS I G, et al.The influence of confinement on the penetration of ceramic targets by KE projectiles at 1.8 and 2.6 km/s[J]. Int J Impact Eng, 2006, 33:390-401. doi: 10.1016/j.ijimpeng.2006.09.029
    [17] WILKINS M L.Mechanics of penetration and perforation[J]. Int J Impact Eng, 1978, 16(11):793-807. doi: 10.1016-0020-7225(78)90066-6/
    [18] 蒋志刚, 申志强, 曾首义, 等.穿甲子弹侵彻陶瓷/钢复合靶板试验研究[J].弹道学报, 2007, 19(4):38-42. doi: 10.3969/j.issn.1004-499X.2007.04.011

    JIANG Z G, SHEN Z Q, ZENG S Y, et al.An experimental study on ceramic/mild steel targets against APP[J]. Journal of Ballistics, 2007, 19(4):38-42. doi: 10.3969/j.issn.1004-499X.2007.04.011
    [19] WIERZBICKI T.Petalling of plates under explosive and impact loading[J]. Int J Impact Eng, 1999, 22(9):935-954. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4ca255fc245f7900a0ee51f5edecf4c6
    [20] 楼建锋, 王政, 洪滔, 等.钨合金杆侵彻半无限厚铝合金靶的数值研究[J].高压物理学报, 2009, 23(1):65-69. doi: 10.3969/j.issn.1000-5773.2009.01.011

    LOU J F, WANG Z, HONG T, et al.Numerical study on penetration of semi-infinite aluminum-alloy targets by tungsten-alloy rod[J]. Chinese Journal of High Pressure Physics, 2009, 23(1):65-69. doi: 10.3969/j.issn.1000-5773.2009.01.011
    [21] FERNÁNDEZ-FDZ D, ZAERA R, FERNÁNDEZ-SÁEZ J.A constitutive equation for ceramic materials used in lightweight armors[J]. Comput Struct, 2011, 89(23/24):2316-2324. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=07315cdb0c501a08bd7a31939deda752
    [22] 宋顺成, 王军, 王建军.钨合金长杆弹侵彻陶瓷层合板的数值模拟[J].爆炸与冲击, 2005, 25(2):102-106. doi: 10.3321/j.issn:1001-1455.2005.02.002

    SONG S C, WANG J, WANG J J.Numerical simulation for penetration of ceramic composite plate by long-rod projectile of tungsten alloy[J]. Explosion and Shock Waves, 2005, 25(2):102-106. doi: 10.3321/j.issn:1001-1455.2005.02.002
    [23] STEINBERG D L.Equation of state and strength properties of selected materials: UCRL-MA-106439[R]. Livermore: Lawrence Livermore National Laboratory, 1996.
    [24] HOLMQUIST T J, RAJENDRAN A M, TEMPLETON D W, et al.A ceramic armor material database: TARDEC Technical Report 13754[R]. Warren, Michigan: US Army Tank Automotive Research Development and Engineering Center, 1999.
    [25] CRONIN D S, BUI K, KAUFMANN C, et al.Implementation and validation of the Johnson-Holmquist ceramic material model in LS-DYNA[C]//4th European LS-DYNA Users Conference, 2003. https://www.dynamore.de/en/downloads/papers/03-conference/material/implementation-and-validation-of-the-johnson/view
    [26] 吴克刚.Al2O3陶瓷板和装甲钢板抗长杆动能弹侵彻效应的实验与数值模拟研究[D].长沙: 国防科学技术大学, 2004. http://cdmd.cnki.com.cn/Article/CDMD-90002-2005143776.htm

    WU K G.Experimental and numerical study on the penetration effect of Al2O3 ceramic plate and armor plate against long rod kinetic energy projectile[D]. Changsha: National Defense Science and Technology University, 2004. http://cdmd.cnki.com.cn/Article/CDMD-90002-2005143776.htm
    [27] 翟阳修, 吴昊, 方秦.基于A-T模型的长杆弹超高速侵彻陶瓷靶体强度分析[J].振动与冲击, 2017, 36(3):183-188. http://d.old.wanfangdata.com.cn/Periodical/zdycj201703029

    ZHAI Y X, WU H, FANG Q.Strength analysis of ceramic targets against hypervelocity penetration of long-rod projectile based on A-T model[J]. Journal of Vibration and Shock, 2017, 36(3):183-188. http://d.old.wanfangdata.com.cn/Periodical/zdycj201703029
    [28] WANG B, LU G.On the optimisation of two-component plates against ballistic impact[J]. J Mater Process Tech, 1996, 57(1/2):141-145. http://www.sciencedirect.com/science/article/pii/0924013695020500
    [29] BEN-DOR G, DUBINSKY A, ELPERIN T.Improved Florence model and optimisation of two-component armor against single impact or two impacts[J]. Compos Struct, 2009, 88(1):158-165. doi: 10.1016/j.compstruct.2008.02.015
    [30] HETHERINGTON J G.The optimisation of two component composite armors[J]. Int J Impact Eng, 1992, 12(3):409-414. doi: 10.1016/0734-743X(92)90145-J
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  7854
  • HTML全文浏览量:  3168
  • PDF下载量:  229
出版历程
  • 收稿日期:  2017-01-11
  • 修回日期:  2017-03-28

目录

    /

    返回文章
    返回