In-Situ High-Pressure Neutron Diffraction with Supported PCBN Anvils
-
摘要: 基于多晶立方氮化硼(PCBN)的高硬度以及对中子良好的吸收性,选用PCBN作为压砧材料,设计了一种新型外凹式平面压砧以及由钛锆合金、碳纤维管、聚四氟乙烯组成的复合封垫。使用该PCBN压腔,分别利用ZnTe和ZrW2O8的相变点对腔体压力进行标定。结果表明:当样品腔体积为9 mm3、负载压力为260 kN时,腔内压力达到9 GPa。高压原位中子衍射实验显示,采用外凹式PCBN压腔得到了无压砧背底信号的铁的高压中子衍射谱。预计通过进一步优化,利用PCBN压腔可获得更高压力(10 GPa以上)下高质量高压中子衍射谱。Abstract: We used the polycrystalline cubic boron nitride (PCBN) as the anvil material based on its high hardness and strong absorption of neutrons, and designed a new type of concave-flat anvil and a hybrid gasket made of TiZr alloy, carbon fiber and teflon.The PCBN cell pressure was calibrated using the transformation points of ZnTe and ZrW2O8 respectively.The results show that the cell pressure reaches 9 GPa with the sample cell volume of 9 mm3 when the load pressure is 260 kN.The in-situ high pressure neutron diffraction experiments indicate that the PCBN anvil miscellaneous signal was not observed in the high pressure neutron diffraction patterns of iron.By further optimizing the PCBN cell, we expect to obtain a high-quality neutron diffraction patterns under higher pressure than 10 GPa.
-
Key words:
- high pressure /
- in-situ neutron diffraction /
- concave-flat /
- PCBN anvils
-
表 1 金刚石、碳化钨、碳化硅、聚晶立方氮化硼压砧应用于高压原位中子衍射情况
Table 1. Application to the in-situ high-pressure neutron diffraction of diamond, WC, SiC and PCBN anvils
Anvil material pmax/(GPa) pexp/(GPa) Application of neutron source Sample volume/
(mm3)Advantages Ref. Diamond 94 Pulsed neutron sources 0.016 Can be used for spectrum research [15] 30 25 Pulsed/continuous (in high flux) neutron sources 35 [9] WC 15 10 Pulsed/continuous (in high flux) neutron sources 75 [8, 16] SiC 60 12 Pulsed neutron sources 0.2 Can be used for spectrum research [11-14] PCBN 10 9.5 Pulsed/continuous (in high flux) neutron sources 35 Without anvil neutron diffraction peak [10, 17] 表 2 PCBN块体材料性能
Table 2. Characterization of PCBN bulk materials
Sample No. Vickers hardness/(GPa) Contents Morphology 1# 30 cBN, Al, AlN, O, Ti, Fe, Co, et al. Well sintered 2# 18 cBN, Al, AlN, C, O, Si, Fe, Co, et al. Larger grains, more pores 3# 28 cBN, Al, AlN, O, Ti, Si, Fe, Co, et al. Uneven grains, more pores 4# 33 cBN, Al, AlN, C, O, Ti, Si, Fe, Co, et al. Large pores 5# 30 cBN, Al, AlN, O, Ti, Si, Fe, et al. Well sintered, uniform microstructure 6# 27 cBN, Al, AlN, O, Ti, Fe, et al. Many pores 表 3 压砧测试结果
Table 3. Test results of anvils
Anvil shape Bevel angle/(°) Loading force of anvils ruptured/(kN) Average loading force of anvils ruptured/(kN) Average thickness of the gasket after experiments/(mm) Exp.No.1 Exp.No.2 Flat 10 278 260 269 2.100 Flat 10(20) 271 266 268 1.898 Flat 20 221 240 230 1.220 Flat 30 200 160 180 1.312 Flat 40 118 150 134 1.460 Concave-flat 10(20) 254 266 260 0.886 -
[1] ZHOU Y, KIM D J, ROSA P F S, et al.Pressure-induced quantum phase transitions in a YbB6 single crystal[J]. Phys Rev B, 2015, 92(24):11181-11185. doi: 10.1103/PhysRevB.92.241118 [2] WU W, CHENG J G, MATSUBAYASHI K, et al.Superconductivity in the vicinity of antiferromagnetic order in CrAs[J]. Nat Commun, 2014, 5(5):5508. http://d.old.wanfangdata.com.cn/Periodical/wlxb201703022 [3] YAN X Z, DONG H N, LI Y C, et al.Phase transition induced strain in ZnO under high pressure[J]. Sci Rep, 2016, 6(6):24958. http://www.nature.com/articles/srep24958 [4] HUANG X L, DUAN D F, LI X, et al.High-pressure polymorphism as a step towards high density structures of LiAlH4[J]. Appl Phys Lett, 2015, 107(4):041906. doi: 10.1063/1.4927056 [5] WANG X L, LI J F, XU N, et al.Layered polymeric nitrogen in RbN3 at high pressures[J]. Sci Rep, 2015, 5:16677. doi: 10.1038/srep16677 [6] DITTRICH H, BIENIOK A.Structural properties: X-ray and neutron diffraction[M]//GARCHE J, DYER C K, MOSELEY P T, et al.Encyclopedia of Electrochemical Power Sources.Amsterdam: Elsevier Science & Technology, 2009: 718-737. [7] DAN A N.Neutron scattering and hydrogenous materials[J]. Mater Today.2006, 9(1/2):34-41. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ028228514/ [8] BESSON J M, NELMES RJ, HAMEL G, et al.Netron powder diffraction above 10 GPa[J]. Physica B, 1992, 180/181(6):907-910. https://www.sciencedirect.com/science/article/pii/092145269290505M [9] KLOTZ S, MBESSON J, HAMEL G, et al.Neutron power diffraction at pressures beyond 25 GPa[J]. Appl Phys Lett, 1995, 66(14):1735-1737. doi: 10.1063/1.113350 [10] KLOTZ S, STRASSLE T H, ROUSSE G, et al.Angle-dispersive neutron diffraction under high pressure to 10 GPa[J]. Appl Phys Lett, 2005, 86(3):031917. doi: 10.1063/1.1855419 [11] XU J A, MAO H K.Moissanite:a window for high-pressure experiments[J]. Science, 2000, 290(5492):783-785. doi: 10.1126/science.290.5492.783 [12] XU J A, MAO H K, HEMLEY R J, et al.The moissanite anvil cell:a new tool for high-pressure research[J]. J Phys Condens Matter, 2002, 14(44):11543. doi: 10.1088/0953-8984/14/44/513 [13] XU J A, MAO H K, HEMLEY R J, et al.Large volume high-pressure cell with supported moissanite anvils[J]. Rev Sci Instrum, 2004, 75(4):1034-1038. doi: 10.1063/1.1651634 [14] LIU Z X, XU J A, HENRY P S, et al.Moissanite (SiC) as windows and anvils for high-pressure infrared spectroscopy[J]. Rev Sci Instrum, 2004, 75(11):5026-5029. doi: 10.1063/1.1808123 [15] BOEHLER R, GUTHRIE M, MOLAISON J J, et al.Large-volume diamond cells for neutron diffraction above 90 GPa[J]. High Pressure Res, 2013, 33(3):546-554. doi: 10.1080/08957959.2013.823197 [16] GOTOU H, YAGI T, OKADA T, et al.A simple opposed-anvil apparatus for high pressure and temperature experiments above 10 GPa[J]. High Pressure Res, 2011, 31(4):592-620. doi: 10.1080/08957959.2011.618130 [17] KLOTZ S, STRASSLE T, BOVE L E.Quasi-elastic neutron scattering in the multi-GPa range and its application to liquid water[J]. Appl Phys Lett, 2013, 103(19):193504. doi: 10.1063/1.4828661 [18] BULL C L, BOCIAN A, HAMIDOV H, et al.Note:achieving quasi-hydrostatic conditions in large-volume toroidal anvils for neutron scattering to pressures of up to 18 GPa[J]. Rev Sci Instrum, 2011, 82(7):076101. doi: 10.1063/1.3606643 [19] BULL C, GUTHRIE M, KLOTZ S, et al.Toroidal anvils for single-crystal neutron studies[J]. High Pressure Res, 2005, 25(4):229-231. doi: 10.1080/08957950500452893 [20] 惠博, 贺端威, 陆裕平, 等.用于原位中子散射的液压对顶砧系统[J].高压物理学报, 2013, 27(4):517-522. http://www.gywlxb.cn/CN/abstract/abstract1600.shtmlHUI B, HE D W, LU Y P, et al.A hydraulic opposite anvil system for high-pressure in-situ neutron diffraction[J]. Chinese Journal of High Pressure Physics, 2013, 27(4):517-522. http://www.gywlxb.cn/CN/abstract/abstract1600.shtml [21] FANG L M, WANG Y, CHEN X P, et al.A pressure calibration method for a portable wide-access "panoramic" cell[J]. Chin Phys B, 2014, 23(11):110701. doi: 10.1088/1674-1056/23/11/110701 [22] MERRILL L.Behavior of the AB-type compounds at high pressures and high temperatures[J]. J Phys Chem Ref Data, 1977, 6(4):1205-1252. doi: 10.1063/1.555565 [23] EVANS J S O, HU Z, JORGENSEN J D, et al.Compressibility, phase transitions, and oxygen migration in zirconium tungstate, ZrW2O8[J]. Science, 1997, 275(5296):61-65. doi: 10.1126/science.275.5296.61 [24] PEROTTONI C A, JORNADA J A H.Pressure-induced amorphization and negative thermal expansion in ZrW2O8[J]. Science, 1998, 280(5365):886-889. doi: 10.1126/science.280.5365.886 [25] MAO H K, BASSETT W A, TAKAHASHI T.Effect of pressure on crystal structure and lattice parameters of iron up to 300 kbar[J]. J Appl Phys, 1967, 38(1):272-276. doi: 10.1063/1.1708965