Experimental Investigation on Richtmyer-Meshkov Instability of a "V" Shaped Interface Subjected to Shock Wave
-
摘要: 在激波管中实验研究了二维V形空气/SF6界面在入射激波和反射激波作用下的Richtmyer-Meshkov不稳定性发展规律。实验中采用细针约束肥皂膜的方法形成了精确可控的V形初始界面,利用高速纹影技术获得了受冲击的V形界面演化图像。通过改变初始V形界面顶角表征初始扰动振幅,获得了不同初始振幅条件下的波系和界面演化。结果表明,不同顶角下,入射激波冲击过后,界面形态表现出明显的差异,进一步导致反射激波冲击后界面形态的多样性。当顶角较小时,反射激波在界面内外引起复杂的波系结构,从而对界面形态及反相现象产生较大的影响。反射激波的二次作用使流场快速进入湍流混合状态,并且顶角较小时流场趋于各向同性发展。对反射激波作用后的界面混合宽度进行了测量,并与理论模型预测结果进行对比,发现理论模型不能很好地预测混合宽度的增长,主要是因为反射激波作用之后流场并没有完全达到湍流混合状态,不符合理论模型的适用条件。
-
关键词:
- Richtmyer-Meshkov不稳定性 /
- V形初始界面 /
- 初始扰动振幅 /
- 反射激波
Abstract: The Richtmyer-Meshkov instability of a "V" shaped air/SF6 interface accelerated by a planar incident shock and its reshock was experimentally investigated in a shock tube.The soap film technique was adopted to form a well-controllable initial interface, and the flow field was captured by a high-speed schlieren system.Through changing the vertex angle of the interface, the initial perturbation amplitude was varied, and the effect of the initial perturbation amplitude on the wave pattern and the flow morphology was highlighted.The results show that, after the impact of the incident shock, the interface morphology is different for different vertex angles, further causing the diversity of the interface morphology after the reshock impact.For the interfaces with small vertex angles, the complicated wave patterns will emerge inside and outside the interface after the reshock, which exert an influence on the interface morphology and phase inversion phenomenon.The flow enters the turbulent mixing quickly after the reshock, and the development of interface for small vertex angles tends towards isotropy.Moreover, the mixing width after the reshock was measured from experiments and compared with the theoretical predictions.The model was found to be invalid mainly because the initial conditions of the experiments violate the requirement of the model. -
图 3 平面激波与不同顶角的V形界面相互作用的纹影图像(入射激波从左向右传播,反射激波接触演化界面时刻定义为零时刻)
Figure 3. Schlieren images of the interaction of a planar shock with a V shaped interface with different vertex angles
(The incident shock propagates from left to right, and the initial time is defined as the moment of the reflected shock encountering the evolving interface.)
图 4 反射激波与V形空气/SF6界面相互作用后特征点S的运动规律(a)及其局部放大图(b)
(图中的椭圆形虚线代表特征点S出现反向增长的阶段)
Figure 4. Time variation of the characteristic point of S after the interaction of the reflected shock with the V shaped air/SF6 interface (a), and the partial enlargement (b) (The oval dashed lines represent the backward motion of S.)
表 1 实验初始条件
Table 1. Initial conditions of experiments
θ/(°) Ma x/(mm) 60 1.20 181 90 1.20 210 120 1.21 293 140 1.20 235 160 1.19 243 -
[1] RICHTMYER R D.Taylor instability in shock acceleration of compressible fluids[J]. Commun Pur Appl Math, 1960, 13(2):297-319. doi: 10.1002/(ISSN)1097-0312 [2] MESHKOV E E.Instability of the interface of two gases accelerated by a shock wave[J]. Fluid Dynam, 1969, 4(5):101-104. http://d.old.wanfangdata.com.cn/Periodical/wlxb201723027 [3] JACOBS J W, KRIVETS V V.Experiments on the late-time development of single-mode Richtmyer-Meshkov instability[J]. Phys Fluids, 2005, 17(3):034105. doi: 10.1063/1.1852574 [4] LONG C C, KRIVETS V V, GREENOUGH J A, et al.Shock tube experiments and numerical simulation of the single-mode, three-dimensional Richtmyer-Meshkov instability[J]. Phys Fluids, 2009, 21(11):114104. doi: 10.1063/1.3263705 [5] TOMKINS C, KUMAR S, ORLICZ G, et al.An experimental investigation of mixing mechanisms in shock-accelerated flow[J]. J Fluid Mech, 2008, 611:131-150. doi: 10.1017-S0022112008002723/ [6] BALAKUMAR B J, ORLICZ G C, RISTORCELLI J R, et al.Turbulent mixing in a Richtmyer-Meshkov fluid layer after reshock:velocity and density statistics[J]. J Fluid Mech, 2012, 696:67-93. doi: 10.1017/jfm.2012.8 [7] ZOU L, LIAO S, LIU C, et al.Aspect ratio effect on shock-accelerated elliptic gas cylinders[J]. Phys Fluids, 2016, 28(3):036101. doi: 10.1063/1.4943127 [8] HAAS J F, STURTEVANT B.Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities[J]. J Fluid Mech, 1987, 181:41-76. doi: 10.1017/S0022112087002003 [9] 郭文灿, 刘仓理, 谭多望, 等.平面弱激波加载下球形气泡演化的实验研究[J].高压物理学报, 2009, 23(6):460-466. doi: 10.3969/j.issn.1000-5773.2009.06.010GUO W C, LIU C L, TAN D W, et al.Experimental investigation on spherical bubble evolution loaded by a weak planar shock wave[J]. Chinese Journal of High Pressure Physics, 2009, 23(6):460-466. doi: 10.3969/j.issn.1000-5773.2009.06.010 [10] ZHAI Z G, SI T, LUO X S, et al.On the evolution of spherical gas interfaces accelerated by a planar shock wave[J]. Phys Fluids, 2011, 23(8):084104. doi: 10.1063/1.3623272 [11] WANG X S, YANG D G, WU J Q, et al.Interaction of a weak shock wave with a discontinuous heavy-gas cylinder[J]. Phys Fluids, 2015, 27(6):064104. doi: 10.1063/1.4922613 [12] BATES K R, NIKIFORAKIS N, HOLDER D.Richtmyer-Meshkov instability induced by the interaction of a shock wave with a rectangular block of SF6[J]. Phys Fluids, 2007, 19(3):036101. doi: 10.1063/1.2565486 [13] LUO X S, WANG M H, SI T, et al.On the interaction of a planar shock with an SF6 polygon[J]. J Fluid Mech, 2015, 773(2):366-394. http://journals.cambridge.org/abstract_S0022112015002578 [14] 罗喜胜, 翟志刚, 司廷, 等.激波诱导下的气体界面不稳定性实验研究[J].力学进展, 2014, 44:201407. doi: 10.6052/1000-0992-14-028LUO X S, ZHAI Z G, SI T, et al.Experimental study on the interfacial instability induced by shock waves[J]. Advances in Mechanics, 2014, 44:201407. doi: 10.6052/1000-0992-14-028 [15] WANG T, LIU J H, BAI J S, et al.Experimental and numerical investigation of inclined air/SF6 interface instability under shock wave[J]. Appl Math Mech, 2012, 33(1):37-50. doi: 10.1007/s10483-012-1532-x [16] 刘金宏, 黄文斌, 谭多望, 等.激波冲击下Air/SF6斜界面不稳定性实验研究[J].实验流体力学, 2010, 24(6):27-31. doi: 10.3969/j.issn.1672-9897.2010.06.006LIU J H, HUANG W B, TAN D W, et al.Experimental study of instability of shock accelerated air/SF6 inclined interfaces[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(6):27-31. doi: 10.3969/j.issn.1672-9897.2010.06.006 [17] HOLDER D A, SMITH A V, BARTON C J, et al.Mix experiments using a two-dimensional convergent shock-tube[J]. Laser Part Beams, 2003, 21(3):403-409. http://adsabs.harvard.edu/abs/2003LPB....21..403H [18] MCFARLAND J A, GREENOUGH J A, RANJAN D.Computational parametric study of a Richtmyer-Meshkov instability for an inclined interface[J]. Phys Rev E, 2011, 84(2):026303. doi: 10.1103/PhysRevE.84.026303 [19] MCFARLAND J, REILLY D, CREEL S, et al.Experimental investigation of the inclined interface Richtmyer-Meshkov instability before and after reshock[J]. Exp Fluids, 2014, 55(1):1640-1653. doi: 10.1007/s00348-013-1640-1 [20] REILLY D, MCFARLAND J, MOHAGHAR M, et al.The effects of initial conditions and circulation deposition on the inclined-interface reshocked Richtmyer-Meshkov instability[J]. Exp Fluids, 2015, 56(8):168-183. doi: 10.1007/s00348-015-2035-2 [21] LUO X S, DONG P, SI T, et al.The Richtmyer-Meshkov instability of a 'V' shaped air/SF6 interface[J]. J Fluid Mech, 2016, 802:186-202. doi: 10.1017/jfm.2016.476 [22] ZHAI Z G, DONG P, SI T, et al.The Richtmyer-Meshkov instability of a "V" shaped air/helium interface subjected to a weak shock[J]. Phys Fluids, 2016, 28(8):082104. doi: 10.1063/1.4961038 [23] LEINOV E, MALAMUD G, ELBAZ Y, et al.Experimental and numerical investigation of the Richtmyer-Meshkov instability under re-shock conditions[J]. J Fluid Mech, 2009, 626:449-475. doi: 10.1017/S0022112009005904 [24] HILL D J, PANTANO C, PULLIN D I.Large-eddy simulation and multiscale modelling of a Richtmyer-Meshkov instability with reshock[J]. J Fluid Mech, 2006, 557:29-61. doi: 10.1017/S0022112006009475 [25] SI T, ZHAI Z G, YANG J M, et al.Experimental investigation of reshocked spherical gas interfaces[J]. Phys Fluids, 2012, 24(5):054101. doi: 10.1063/1.4711866 [26] HAEHN N, WEBER C, OAKLEY J, et al.Experimental investigation of a twice-shocked spherical gas inhomogeneity with particle image velocimetry[J]. Shock Waves, 2011, 21(3):225-231. doi: 10.1007/s00193-011-0299-x [27] 王显圣, 司廷, 罗喜胜, 等.反射激波冲击重气柱的RM不稳定性数值研究[J].力学学报, 2012, 44(4):1-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201203441563WANG X S, SI T, LUO X S, et al.Numerical study on the rm instability of a heavy-gas cylinder interacted with reshock[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(4):1-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201203441563 [28] ZHAI Z G, ZHANG F, SI T, et al.Evolution of heavy gas cylinder under reshock conditions[J]. J Vis, 2014, 17(2):123-129. doi: 10.1007/s12650-014-0198-1 [29] 廖深飞, 邹立勇, 刘金宏, 等.激波两次冲击下重气柱Richtmyer-Meshkov不稳定性的粒子图像测速研究[J].高压物理学报, 2016, 30(6):463-470. http://www.gywlxb.cn/CN/abstract/abstract1910.shtmlLIAO S F, ZOU L Y, LIU J H, et al.A particle image velocimetry study of Richtmyer-Meshkov instability in a twice-shocked heavy gas cylinder[J]. Chinese Journal of High Pressure Physics, 2016, 30(6):463-470. http://www.gywlxb.cn/CN/abstract/abstract1910.shtml [30] HAHN M, DRIKAKIS D, YOUNGS D L, et al.Richtmyer-Meshkov turbulent mixing arising from an inclined material interface with realistic surface perturbations and reshocked flow[J]. Phys Fluids, 2011, 23(4):046101. doi: 10.1063/1.3576187 [31] ISENBERG C.The science of soap films and soap bubbles[M]. New York:Dover Publications Inc., 1992. [32] WANG M H, SI T, LUO X S.Generation of polygonal gas interfaces by soap film for Richtmyer-Meshkov instability study[J]. Exp Fluids, 2013, 54(1):1427. doi: 10.1007/s00348-012-1427-9 [33] MIKAELIAN K O.Testing an analytic model for Richtmyer-Meshkov turbulent mixing widths[J]. Shock Waves, 2015, 25(1):35-45. doi: 10.1007/s00193-014-0537-0