近十年我国在地球内部物质高压物性实验研究方面的主要进展

刘曦 代立东 邓力维 范大伟 刘琼 倪怀玮 孙樯 巫翔 杨晓志 翟双猛 张宝华 张莉 李和平

刘曦, 代立东, 邓力维, 范大伟, 刘琼, 倪怀玮, 孙樯, 巫翔, 杨晓志, 翟双猛, 张宝华, 张莉, 李和平. 近十年我国在地球内部物质高压物性实验研究方面的主要进展[J]. 高压物理学报, 2017, 31(6): 657-681. doi: 10.11858/gywlxb.2017.06.001
引用本文: 刘曦, 代立东, 邓力维, 范大伟, 刘琼, 倪怀玮, 孙樯, 巫翔, 杨晓志, 翟双猛, 张宝华, 张莉, 李和平. 近十年我国在地球内部物质高压物性实验研究方面的主要进展[J]. 高压物理学报, 2017, 31(6): 657-681. doi: 10.11858/gywlxb.2017.06.001
LIU Xi, DAI Li-Dong, DENG Li-Wei, FAN Da-Wei, LIU Qiong, NI Huai-Wei, SUN Qiang, WU Xiang, YANG Xiao-Zhi, ZHAI Shuang-Meng, ZHANG Bao-Hua, ZHANG Li, LI He-Ping. Recent Progresses in Some Fields of High-Pressure Physics Relevant to Earth Sciences Achieved by Chinese Scientists[J]. Chinese Journal of High Pressure Physics, 2017, 31(6): 657-681. doi: 10.11858/gywlxb.2017.06.001
Citation: LIU Xi, DAI Li-Dong, DENG Li-Wei, FAN Da-Wei, LIU Qiong, NI Huai-Wei, SUN Qiang, WU Xiang, YANG Xiao-Zhi, ZHAI Shuang-Meng, ZHANG Bao-Hua, ZHANG Li, LI He-Ping. Recent Progresses in Some Fields of High-Pressure Physics Relevant to Earth Sciences Achieved by Chinese Scientists[J]. Chinese Journal of High Pressure Physics, 2017, 31(6): 657-681. doi: 10.11858/gywlxb.2017.06.001

近十年我国在地球内部物质高压物性实验研究方面的主要进展

doi: 10.11858/gywlxb.2017.06.001
基金项目: 

中国科学院战略性先导科技专项(B类) XDB18000000

中国科学技术部国家重点研发计划项目 2016YFC0600408

中国科学技术部国家重点研发计划项目 2016YFC0601101

中国科学技术部国家科技基础条件平台项目 2013FY110900-3

国家自然科学基金 41374096

详细信息
    作者简介:

    刘曦(1971-), 男, 博士, 研究员, 主要从事与地球有关的高压矿物物理、实验岩石学、实验地球化学研究.E-mail:xi.liu@pku.edu.cn

    通讯作者:

    李和平(1963-), 男, 博士, 研究员, 主要从事地球内部物质高温高压实验研究. E-mail:liheping@vip.gyig.ac.cn

  • 中图分类号: O521; P313

Recent Progresses in Some Fields of High-Pressure Physics Relevant to Earth Sciences Achieved by Chinese Scientists

  • 摘要: 近十年中国主要地学科研院所都将高温高压实验研究领域作为重点发展学科方向,加大人才引进力度,促进了地学领域高压物理实验研究的快速发展。本文借《高压物理学报》创刊30周年之际,对最近十年由中国科学家主导的、与地球科学联系紧密的相关高压物理研究成果进行了总结和梳理,所涉及的研究方向主要有:下地幔的有关相变、下地幔矿物中铁的自旋态转变、地核物性、岩石电性测量、矿物电性测量、矿物状态方程、高压谱学、高压扩散、高压超声、硅酸盐熔体物理性质、地质流体等。总体来说,过去十年是中国地学高压物理研究飞速发展的十年,研究成果的数量、重要性和显示度都有较大突破,在国际上占有重要地位。这种快速发展势头仅仅是开始,未来十年将是中国地学高压物理研究发展过程中的关键十年,需要各位同仁共同砥砺前行。

     

  • 图  同步辐射XRD与激光加温DAC技术相结合探测地幔深部的矿物相变及其物理化学性质

    Figure  1.  Synchrotron radiation XRD coupled with laser-heated DAC, aiming at the phase transitions and physical-chemical properties of Earth materials in the deep mantle

    图  Fe不同价态和自旋态的电子结构信息示意图

    Figure  2.  Schematic electron structures of iron with different charge and spin states

    图  超声干涉法测量示意图[191-192]((a)常压; (b)高压)

    Figure  3.  Schematic illustration for ultrasonic interferometric measurements[191-192]((a) ambient pressure; (b) high pressure)

    表  1  PCM过去40年发表论文情况以及来自中国的论文

    Table  1.   Papers published by PCM in the last 40 years and China's contribution

    Time interval Paper-total Paper-China China's ranking
    1978-1987 601 3 21st
    1988-1997 748 5 21st
    1998-2007 764 15 14th
    2008-2017* 668 80 5th
    Note:* represents the data gathered using Web of Knowledge on June 23, 2017.
    下载: 导出CSV

    表  2  近年来关于壳幔矿物导电性的代表性实验研究

    Table  2.   Selected experimental studies on electrical properties of crust and mantle minerals, conducted in recent years

    Pressure range Mineral Representative papers
    Crust Clinopyroxene
    Orthopyroxene
    Feldspar
    Olivine
    Ref.[75]
    Ref.[76]
    Ref.[56, 76-79]
    Ref.[79-86]
    Upper mantle Clinopyroxene
    Orthopyroxene
    Garnet
    Phlogopite
    Ref.[79, 87-89]
    Ref.[90-92]
    Ref.[93]
    Ref.[94-95]
    Transition zone Wadsleyite
    Ringwoodite
    Majorite garnet
    Ref.[96-100]
    Ref.[96, 98, 100]
    Ref.[97, 101]
    Lower mantle Bridgmanite
    Ferropericlase
    Ref.[102-106]
    Ref.[103]
    D″ layer Post-perovskite Ref.[102]
    下载: 导出CSV

    表  3  近5年(2013-2017)国内主要课题组获得的部分地球内部矿物状态方程研究成果

    Table  3.   Some experimental results on equation of state of crust and mantle minerals by some Chinese research groups (2013-2017)

    Sample Component Experimental method Experimental condition References
    Mg1.8Fe0.2SiO4 BLS, XRD 27 GPa, 900 K Ref. [113]
    Olivine Mg1.83Fe0.17SiO4 Single-XRD 10 GPa Ref. [114]
    Mg2SiO4 Single-XRD 10 GPa Ref. [114]
    Aegirine Single-XRD 60 GPa Ref. [115]
    Pyroxene Augite Single-XRD 27 GPa, 700 K Ref. [116]
    Hypersthene Powder-XRD 10 GPa Ref. [117]
    Spe38Alm62 Powder-XRD 16.2 GPa, 800 K Ref. [118]
    Spe64Alm36 Powder-XRD 15.5 GPa, 800 k Ref. [118]
    Garnet Grs50And50 Powder-XRD 22.8 GPa, 900 K Ref. [119]
    Uva100 Powder-XRD 16.2 GPa, 900 k Ref. [120]
    Hydrous Prp100 Powder-XRD 16.8 GPa, 900 K Ref. [121]
    (Mg1-xMnx)Cr2O4 Powder-XRD 10 GPa, 1 273 K Ref. [122]
    Fe2TiO4 Powder-XRD 7 GPa Ref. [123]
    Spinel Mg2TiO4 Powder-XRD 15 GPa Ref. [124]
    Zn2TiO4 Powder-XRD 24 GPa Ref. [125]
    β-CaCr2O4 Powder-XRD 16 GPa Ref. [126]
    ZnCO3 Powder-XRD 50 GPa Ref. [127]
    PbCO3 Powder-XRD 15 GPa Ref. [128]
    FcCO3 Powder-XRD 50 GPa Ref. [32]
    Carbonate MnCO3 Single-XRD 10 GPa Ref. [129]
    Cu3(CO3)2(OH)2 Powder-XRD 11 GPa Ref. [130]
    SrCO3 Powder-XRD 9 GPa Ref. [131]
    BaCO3 Powder-XRD 5 GPa Ref. [131]
    Sr10(PO4)6F2 Powder-XRD 5 GPa, 1 273 K Ref. [132]
    Ba10(PO4)6F2 Powder-XRD 5 GPa, 1273 K Ref. [132]
    (Ca8.83Pb1.16)(PO4)6F2 Powder-XRD 29.2 GPa Ref. [133]
    Phosphate Pb10(AsO4)6Cl2 Powder-XRD 14 GPa Ref. [134]
    Pb10(PO4)6Cl2 Powder-XRD 15 GPa Ref. [134]
    Pb10(VO4)6Cl2 Powder-XRD 8.7 GPa Ref. [135]
    Ca4La6(SiO4)6(OH)2 Powder-XRD 9.3 GPa Ref. [136]
    γ-Ca3(PO4)2 Powder-XRD 35.4 GPa, 1 300 K Ref. [137]
    Epidote Single-XRD 29 GPa Ref. [138]
    Clinozoisite Single-XRD 29 GPa Ref. [138]
    Chondrodite BLS, XRD 800 K Ref. [139]
    Hydrated mineral Tourmaline Powder-XRD 18 GPa, 723 K Ref. [140]
    Adamite Powder-XRD 11 GPa Ref. [141]
    Phase B BLS, XRD 12 GPa, 700 K Ref. [142]
    Phase D SNFS, XRD 110 GPa Ref. [31]
    Note:Prp-pyrope; Alm-almandine; Spe-spessartine; Grs-grossular; And-andradite; Uva-uvarovite; BLS-Brillouin light scattering; SNFS-synchrotron nuclear forward scattering.
    下载: 导出CSV
  • [1] EYLES V A.Sir James Hall (1761-1832)[J]. Endeavour, 1961, 20:210-213.
    [2] BIRCH F.Elasticity and constitution of the Earth's interior[J]. J Geophys Res, 1952, 57(2):227-286. doi: 10.1029/JZ057i002p00227
    [3] IRIFUNE T.Absence of an aluminous phase in the upper part of the Earth's lower mantle[J]. Nature, 1994, 370(6485):131-133. doi: 10.1038/370131a0
    [4] KESSON S E, GERALD J D F, SHELLEY J M.Mineralogy and dynamics of a pyrolite lower mantle[J]. Nature, 1998, 393(6682):252-255. doi: 10.1038/30466
    [5] GARNERO E J, MCNAMARA A K.Structure and dynamics of Earth's lower mantle[J]. Science, 2008, 320(5876):626-628. doi: 10.1126/science.1148028
    [6] LIU L G.The post-spinel phase of forsterite[J]. Nature, 1976, 262(5571):770-772. doi: 10.1038/262770a0
    [7] TSCHAUNER O, MA C, BECKETT J R, et al.Discovery of bridgmanite, the most abundant mineral in Earth, in a shocked meteorite[J]. Science, 2014, 346(6213):1100-1102. doi: 10.1126/science.1259369
    [8] XIAO W S, TAN D, XIONG X, et al.Large volume collapse observed in the phase transition in cubic PbCrO3 perovskite[J]. Proc Natl Acad Sci USA, 2010, 107(32):14026-14029. doi: 10.1073/pnas.1005307107
    [9] MURAKAMI M, HIROSE K, KAWAMURA K, et al.Post-perovskite phase transition in MgSiO3[J]. Science, 2004, 304(5672):855-858. doi: 10.1126/science.1095932
    [10] ZHANG L, MENG Y, YANG W G, et al.Disproportionation of (Mg, Fe)SiO3 perovskite in Earth's deep lower mantle[J]. Science, 2014, 344(6186):877-882. doi: 10.1126/science.1250274
    [11] WILLIAMS Q.Deep mantle matters[J]. Science, 2014, 344(6186):800-801. doi: 10.1126/science.1254399
    [12] HU Q Y, KIM D Y, YANG W G, et al.FeO2 and FeOOH under deep lower-mantle conditions and Earth's oxygen-hydrogen cycles[J]. Nature, 2016, 534(7606):241-244. doi: 10.1038/nature18018
    [13] HU Q Y, KIM D Y, LIU J, et al.Dehydrogenation of goethite in Earth's deep lower mantle[J]. Proc Natl Acad Sci USA, 2017, 114(7):1498-1501. doi: 10.1073/pnas.1620644114
    [14] ZHANG L, MENG Y, DERA P, et al.Single-crystal structure determination of (Mg, Fe)SiO3 postperovskite[J]. Proc Natl Acad Sci USA, 2013, 110(16):6292-6295. doi: 10.1073/pnas.1304402110
    [15] ZHANG L, POPOV D, MENG Y, et al.In-situ crystal structure determination of seifertite SiO2 at 129 GPa:studying a minor phase near Earth's core-mantle boundary[J]. Am Mineral, 2016, 101(1):231-234.
    [16] YUAN H S, ZHANG L.In situ determination of crystal structure and chemistry of minerals at Earth's deep lower mantle conditions[J]. Matter Radiat Extremes, 2017, 2(3):117-128. doi: 10.1016/j.mre.2017.01.002
    [17] VAN DER HILST R, ENGDAHL R, SPAKMAN W, et al.Tomographic imaging of subducted lithosphere below northwest Pacific island arcs[J]. Nature, 1991, 353(6339):37-43. doi: 10.1038/353037a0
    [18] LIU X, OHFUJI H, NISHIYAMA N, et al.High-P behavior of anorthite composition an some phase relations of the CaO-Al2O3-SiO2 system to the lower mantle of the Earth, and their geophysical implications[J]. J Geophys Res, 2012, 117(B9):B09205. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=12f3d48466f8ed301a032427e9f0a3fc
    [19] CHEN M, SHU J, MAO H K, et al.Natural occurrence and synthesis of two new postspinel polymorphs of chromite[J]. Proc Natl Acad Sci USA, 2003, 100(25):14651-14654. doi: 10.1073/pnas.2136599100
    [20] CHEN M, SHU J, MAO H K.Xieite, a new mineral of high-pressure FeCr2O4 polymorph[J]. Chin Sci Bull, 2008, 53(21):3341-3345. http://www.cqvip.com/Main/Detail.aspx?id=28668004
    [21] LIN J F, STRUZHKIN V V, JACOBSEN S D, et al.Spin transition of iron in magnesiowüstite in Earth's lower mantle[J]. Nature, 2005, 436(7049):377-380. doi: 10.1038/nature03825
    [22] LIN J F, VANKÓ G, JACOBSEN S D, et al.Spin transition zone in Earth's lower mantle[J]. Science, 2007, 317(5845):1740-1743. doi: 10.1126/science.1144997
    [23] LIN J F, WATSON H C, VANKÓ G et al.Intermediate-spin ferrous iron in lowermost mantle post-perovskite and perovskite[J]. Nature Geosci, 2008, 1(10):688-691. doi: 10.1038/ngeo310
    [24] WU Z, JUSTO J F, WENTZCOVITCH R M.Elastic anomalies in a spin-crossover system:ferropericlase at lower mantle conditions[J]. Phys Rev Lett, 2013, 110(22):228501. doi: 10.1103/PhysRevLett.110.228501
    [25] WU Z, WENTZCOVITCH R M.Spin crossover in ferropericlase and velocity heterogeneities in the lower mantle[J]. Proc Natl Acad Sci USA, 2014, 111(29):10468-10472. doi: 10.1073/pnas.1322427111
    [26] 吴迪, 赵纪军, 田华.Fe2+取代对MgSiO3钙钛矿高温高压物性的影响[J].物理学报, 2013, 62(4):515-524. http://d.old.wanfangdata.com.cn/Periodical/wlxb201304077

    WU D, ZHAO J J, TIAN H.Effect of substitution Fe2+ on physical properties of MgSiO3 perovskite at high temperature and high pressure[J]. Acta Physica Sinica, 2013, 62(4):515-524. http://d.old.wanfangdata.com.cn/Periodical/wlxb201304077
    [27] 高本州, 何开华, 陈琦丽, 等.含铁后钙钛矿(FexMg1-x)SiO3的自旋、结构以及地震波速特性的第一性原理研究[J].高压物理学报, 2015, 29(5):356-362. http://www.gywlxb.cn/CN/abstract/abstract1826.shtml

    GAO B Z, HE K H, CHEN Q L, et al.First-principles study of spin state, structure and seismic velocity of ferrous-bearing post-perovskite MgSiO3[J]. Chinese Journal of High Pressure Physics, 2015, 29(5):356-362. http://www.gywlxb.cn/CN/abstract/abstract1826.shtml
    [28] MAO Z, WANG F, LIN J F, et al.Equation of state and hyperfine parameters of high-spin bridgmanite in the Earth's lower mantle by synchrotron X-ray diffraction and Mössbauer spectroscopy[J]. Am Mineral, 2017, 102(2):357-368. https://okayama.pure.elsevier.com/en/publications/equation-of-state-and-hyperfine-parameters-of-high-spin-bridgmani
    [29] WU Y, WU X, LIN J F, et al.Spin transition of ferric iron in the NAL phase:implications for the seismic heterogeneities of subducted slabs in the lower mantle[J]. Earth Planet Sci Lett, 2016, 434:91-100. doi: 10.1016/j.epsl.2015.11.011
    [30] WU Y, YANG J, WU X, et al.Elasticity of single-crystal NAL phase at high pressure:a potential source of the seismic anisotropy in the lower mantle[J]. J Geophys Res, 2016, 121(8):5696-5707. doi: 10.1002/2016JB013136
    [31] WU X, WU Y, LIN J F, et al.Two-stage spin transition of iron in FeAl-bearing phase D at lower mantle[J]. J Geophys Res, 2016, 121(9):6411-6420. doi: 10.1002/2016JB013209
    [32] 高静, 巫翔, 秦善, 等.高压下天然菱铁矿的压缩性和电子结构研究[J].岩石矿物学杂志, 2016, 35(2):276-282. doi: 10.3969/j.issn.1000-6524.2016.02.008

    GAO J, WU X, QIN S, et al.Compressibility and electronic structure of natural siderite under high pressure[J]. Acta Petrologica et Mineralogica, 2016, 35(2):276-282. doi: 10.3969/j.issn.1000-6524.2016.02.008
    [33] HUANG S X, KANG D, WU X, et al.Pressure-induced structural and spin transitions of Fe3S4[J]. Sci Rep, 2017, 7:46334. doi: 10.1038/srep46334
    [34] MCDONOUGH W F.Compositional model for the Earth's core[J]. Treatise Geochem, 2003, 2:547-568. http://adsabs.harvard.edu/abs/2003TrGeo...2..547M
    [35] LI J, FEI Y.Experimental constraints on core composition[J]. Treatise Geochem, 2003, 2:521-546. http://www.sciencedirect.com/science?_ob=PdfExcerptURL&_imagekey=3-s2.0-B0080437516020144-main.pdf&_piikey=B0080437516020144&_cdi=273166&_orig=article&_zone=centerpane&_fmt=abst&_eid=3-s2.0-B0080437516020144&_user=12975512&md5=d43c69477315336d96d80395c794dcab&ie=/excerpt.pdf
    [36] 黄海军, 蔡灵仓, 田旭.在200 GPa冲击压强下铁是否会发生固-固相变?[J].高压物理学报, 2007, 21(2):205-209. doi: 10.3969/j.issn.1000-5773.2007.02.015

    HUANG H J, CAI L C, TIAN X.Does there exist a solid-solid transformation in shocked iron at around 200 GPa?[J]. Chinese Journal of High Pressure Physics, 2007, 21(2):205-209. doi: 10.3969/j.issn.1000-5773.2007.02.015
    [37] 黄海军, 经福谦, 蔡灵仓, 等.Fe/FeO/FeS混合物的Hugoniot线研究[J].高压物理学报, 2006, 20(2):139-144. doi: 10.3969/j.issn.1000-5773.2006.02.005

    HUANG H J, JING F Q, CAI L C, et al.Studies of the Hugoniot curve for Fe/FeO/FeS mixture[J]. Chinese Journal of High Pressure Physics, 2006, 20(2):139-144. doi: 10.3969/j.issn.1000-5773.2006.02.005
    [38] HUANG H J, HU X J, JING F Q, et al.Melting behavior of Fe-O-S at high pressure:a discussion on the melting depression induced by O and S[J]. J Geophys Res, 2010, 115(B5):B05207. doi: 10.1029/2009JB006514/full
    [39] HUANG H J, FEI Y W, CAI L C, et al.Evidence for an oxygen-depleted liquid outer core of the Earth[J]. Nature, 2011, 479(7374):513-517. doi: 10.1038/nature10621
    [40] HUANG H J, WU S J, HU X J, et al.Shock compression of Fe-FeS mixture up to 204 GPa[J]. Geophys Res Lett, 2013, 40(4):687-691. doi: 10.1002/grl.50180
    [41] DENG L W, FEI Y W, LIU X, et al.Effect of carbon, sulfur and silicon on iron melting at high pressure:implications for composition and evolution of the planetary terrestrial cores[J]. Geochimi Cosmochimi Acta, 2013, 114(4):220-233. http://d.old.wanfangdata.com.cn/Conference/8682855
    [42] ZHANG Y G, YIN Q Z.Carbon and other light element contents in the Earth's core based on first-principles molecular dynamics[J]. Proc Natl Acad Sci USA, 2012, 109(48):19579-19583. doi: 10.1073/pnas.1203826109
    [43] DENG L W, SEAGLE C, FEI Y W, et al.High pressure and temperature electrical resistivity of iron and implications for planetary cores[J]. Geophys Res Lett, 2013, 40(1):33-37. doi: 10.1029/2012GL054347
    [44] 郭才华, 高平, 宋瑞卿, 等.高温高压下碳酸岩电性的实验研究[J].地震地质, 1987, 9(1):72-76. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000348710

    GUO C H, GAO P, SONG R Q, et al.The experimental study of electrical properties of carbonate under high temperatures and pressures[J]. Seismology and Geology, 1987, 9(1):72-76. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000348710
    [45] 朱茂旭, 谢鸿森, 赵志丹, 等.大别超高压榴辉岩高温高压下电导率实验研究[J].地球物理学报, 2001, 44(1):93-102. doi: 10.3321/j.issn:0001-5733.2001.01.011

    ZHU M X, XIE H S, ZHAO Z D, et al.The experimental studies on electrical conductivity of the Dabie ultrahigh pressure ecologies at high pressures and high temperatures[J]. Chinese Journal of Geophysics, 2001, 44(1):93-102. doi: 10.3321/j.issn:0001-5733.2001.01.011
    [46] 王多君, 李和平, 刘丛强, 等.高温高压下纯橄榄岩电导率的实验研究:改则-鲁谷冷地幔的电导率证据[J].科学通报, 2001, 46(19):1659-1661. doi: 10.3321/j.issn:0023-074X.2001.19.017

    WANG D J, LI H P, LIU C Q, et al.Experimental study on the electrical conductivity of dunite at high temperature and pressure[J]. Chinese Science Bulletin, 2001, 46(19):1659-1661. doi: 10.3321/j.issn:0023-074X.2001.19.017
    [47] WANG D J, LI H P, Yi L, et al.The electrical conductivity of upper-mantle rocks:water content in the upper mantle[J]. Phys Chem Mineral, 2008, 35(3):157-162. doi: 10.1007/s00269-007-0207-1
    [48] WANG D J, GUO Y, YU Y, et al.Electrical conductivity of amphibole-bearing rocks:influence of dehydration[J]. Contrib Mineral Petrol, 2012, 164(1):17-25. doi: 10.1007/s00410-012-0722-z
    [49] DAI L D, HU H Y, LI H P, et al.Influence of temperature, pressure, and oxygen fugacity on the electrical conductivity of dry eclogite, and geophysical implications[J]. Geochem Geophys Geosyst, 2016, 17(6):2394-2407. doi: 10.1002/ggge.v17.6
    [50] DAI L D, HU H Y, LI H P, et al.Electrical conductivity of gabbro:the effects of temperature, pressure and oxygen fugacity[J]. Eur J Mineral, 2015, 27(2):215-224. doi: 10.1127/ejm/2015/0027-2429
    [51] DAI L D, JIANG J J, LI H P, et al.Electrical conductivity of hydrous natural basalts at high temperatures and high pressures[J]. J Appl Geophys, 2015, 112(1):290-297. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9e365e9d3d08b725950d9648333f7d7f
    [52] DAI L D, HU H Y, LI H P, et al.Influence of temperature, pressure and chemical composition on the electrical conductivity of granite[J]. Am Mineral, 2014, 99(7):1420-1428. doi: 10.2138/am.2014.4692
    [53] DAI L D, LI H P, HU H Y, et al.Experimental study of grain boundary electrical conductivities of dry synthetic peridotite under high-temperature, high-pressure, and different oxygen fugacity conditions[J]. J Geophys Res, 2008, 113(B12):B12211. doi: 10.1029/2008JB005820
    [54] DAI L D, LI H P, DENG H M, et al.In situ control of different oxygen fugacity experimental study on the electrical conductivity of lherzolite at high temperature and high pressure[J]. J Phys Chem Solids, 2008, 69(1):101-110. doi: 10.1016/j.jpcs.2007.08.003
    [55] DAI L D, LI H P, LIU C Q, et al.Experimental measurement on the electrical conductivity of pyroxenite at high temperature and high pressure under different oxygen fugacities[J]. High Pressure Res, 2006, 26(3):193-202. doi: 10.1080/08957950600725503
    [56] HU H Y, LI H P, DAI L D, et al.Electrical conductivity of alkali feldspar solid solutions at high temperatures and high pressures[J]. Phys Chem Mineral, 2013, 40(1):51-62. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c9d55fa0dfe53419019d3a4f06a9f97e
    [57] HUI K S, DAI L D, LI H P, et al.Experimental study on the electrical conductivity of pyroxene andesite at high temperature and high pressure[J]. Pure Appl Geophys, 2017, 174(3):1033-1041. doi: 10.1007/s00024-016-1401-1
    [58] HUI K S, ZHANG H, LI H P, et al.Experimental study on the electrical conductivity of quartz andesite at high temperature and high pressure:evidence of grain boundary transport[J]. Solid Earth, 2015, 6(2):1037-1043. http://adsabs.harvard.edu/abs/2015SolE....6.1037H
    [59] SUN W Q, DAI L D, LI H P, et al.Effect of dehydration on the electrical conductivity of phyllite at high temperatures and pressures[J/OL]. Mineral Petrol, 2017[2017-07-01]. https://doi.org/10.1007/s00710-017-0494-2.
    [60] 龚超颖, 刘永刚, 李朋, 等.高温高压下岩石电导率不同测量方法的实验对比——以二辉橄榄岩为例[J].地质学报, 2011, 85(3):343-353. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201103004

    GONG C Y, LIU Y G, LI P, et al.Comparison of measurement methods for electrical conductivity of rocks under high pressure and high temperature:taken the lherzolite as an example[J]. Acta Geologica Sinica, 2011, 85(3):343-353. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201103004
    [61] 李朋, 周文戈, 龚超颖, 等.高压下华北北缘二辉麻粒岩电导率的研究[J].地球物理学报, 2010, 53(10):2386-2395. doi: 10.3969/j.issn.0001-5733.2010.10.012

    LI P, ZHOU W G, GONG C Y, et al.Electrical conductivity of two-pyroxene granulite under high pressure in northern margin of North China craton[J]. Chinese Journal of Geophysics, 2010, 53(10):2386-2395. doi: 10.3969/j.issn.0001-5733.2010.10.012
    [62] 柳江琳, 白武明, 孔祥儒, 等.高温高压下花岗岩、玄武岩和辉橄岩电导率的变化特征[J].地球物理学报, 2001, 44(4):528-533. doi: 10.3321/j.issn:0001-5733.2001.04.011

    LIU J L, BAI W M, KONG X R, et al.Electrical conductivity of granite, basalt and pyroxene peridotite under high temperature high pressure conditions[J]. Chinese Journal of Geophysics, 2001, 44(4):528-533. doi: 10.3321/j.issn:0001-5733.2001.04.011
    [63] 黄晓葛, 白武明, 周文戈.高温高压下黑云斜长片麻岩的电性研究[J].高压物理学报, 2008, 22(3):237-244. doi: 10.3969/j.issn.1000-5773.2008.03.003

    HUANG X G, BAI W M, ZHOU W G.Experimental study on electrical conductivity of biotite- and plagioclase-bearing gneiss at high temperature and high pressure[J]. Chinese Journal of High Pressure Physics, 2008, 22(3):237-244. doi: 10.3969/j.issn.1000-5773.2008.03.003
    [64] 黄小刚, 黄晓葛, 白武明.碳酸盐化橄榄岩的电性研究[J].地球物理学报, 2012, 55(9):3144-3151. http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201209032

    HUANG X G, HUANG X G, BAI W M.Study on the electrical conductivity of carbonated peridotite[J]. Chinese Journal of Geophysics, 2012, 55(9):3144-3151. http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201209032
    [65] 白利平, 杜建国, 刘巍, 等.高温高压下辉长岩纵波速度和电导率实验研究[J].中国科学:D辑, 2002, 32(11):959-968. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200211011

    BAI L P, DU J G, LIU W, et al.The experimental studies on electrical conductivities and P-wave velocities of gabbro at high pressure and high temperature[J]. Science in China Ser D, 2002, 32(11):959-968. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200211011
    [66] NI H W, KEPPLER H, BEHRENS H.Electrical conductivity of hydrous basaltic melts:implications for partial melting in the upper mantle[J]. Contrib Mineral Petrol, 2011, 162(3):637-650. doi: 10.1007/s00410-011-0617-4
    [67] GUO X, LI B, NI H W, et al.Electrical conductivity of hydrous andesitic melts pertinent to subduction zones[J]. J Geophys Res, 2017, 122(3):1777-1788. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1f6763a20251534bceb2a45806a7ad88
    [68] DAI L D, WU L, LI H P, et al.Evidence of the pressure-induced conductivity switching of yttrium-doped SrTiO3[J]. J Phys Condens Mat, 2016, 28(47):475501. doi: 10.1088/0953-8984/28/47/475501
    [69] DAI L D, WU L, LI H P, et al.Pressure-induced phase-transition and improvement of the micro dielectric properties in yttrium-doped SrZrO3[J]. EPL, 2016, 114(5):56003. doi: 10.1209/0295-5075/114/56003
    [70] WU L, DAI L D, LI H P, et al.Anomalous phase transition of Bi-doped Zn2GeO4 investigated by electrical conductivity and Raman spectroscopy under high pressure[J]. J Appl Phys, 2017, 121(12):125901. doi: 10.1063/1.4979311
    [71] WU L, DAI L D, LI H P, et al.Pressure-induced improvement of grain boundary properties in Y-doped BaZrO3[J]. J Phys D, 2016, 49(34):345102. doi: 10.1088/0022-3727/49/34/345102
    [72] ZHUANG Y K, DAI L D, WU L, et al.Pressure-induced permanent metallization with reversible structural transition in molybdenum disulfide[J]. Appl Phys Lett, 2017, 110(3):122103. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cb2b14ed55e88f8dc45f84ed120d2ab7
    [73] LIU K X, DAI L D, LI H P, et al.Migration of impurity level reflected in the electrical conductivity variation for natural pyrite at high temperature and high pressure[J/OL]. Phys Chem Mineral, 2017[2017-07-01]. https://doi.org/10.1007/s00269-017-0904-3.
    [74] 杨晓志.电导岩石学:原理、方法和进展[J].中国科学:地球科学, 2014, 44(9):1884-1900. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201409002.htm

    YANG X Z.Electrical petrology:principles, methods and advances[J]. Scientia Sinica Terrae, 2014, 44(9):1884-1900. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201409002.htm
    [75] YANG X Z, KEPPLER H, MCCAMMON C, et al.Effect of water on the electrical conductivity of lower crustal clinopyroxene[J]. J Geophys Res, 2011, 116(B4):B04208. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7cd6a775994af5181423a6d6f6dccc28
    [76] YANG X Z, KEPPLER H, MCCAMMON C, et al.Electrical conductivity of orthopyroxene and plagioclase in the lower crust[J]. Contrib Mineral Petrol, 2012, 163(1):33-48. doi: 10.1007/s00410-011-0657-9
    [77] HU H Y, LI H P, DAI L, et al.Electrical conductivity of albite at high temperatures and high pressures[J]. Am Mineral, 2011, 96(11/12):1821-1827. http://adsabs.harvard.edu/abs/2011AmMin..96.1821H
    [78] HU H Y, DAI L, LI H P, et al.Electrical conductivity of K-feldspar at high temperature and high pressure[J]. Miner Petrol, 2014, 108(5):609-618. doi: 10.1007/s00710-014-0325-7
    [79] YANG X Z.Orientation-related electrical conductivity of hydrous olivine, clinopyroxene and plagioclase and implications for the structure of the lower continental crust and uppermost mantle[J]. Earth Planet Sci Lett, 2012, 317/318:241-250. doi: 10.1016/j.epsl.2011.11.011
    [80] WANG D J, MOOKHERJEE M, XU Y S, et al.The effect of water on the electrical conductivity of olivine[J]. Nature, 2006, 443(7114):977-980. doi: 10.1038/nature05256
    [81] YOSHINO T, MATSUZAKI T, YAMASHITA S, et al.Hydrous olivine unable to account for conductivity anomaly at the top of the asthenosphere[J]. Nature, 2006, 443(7114):973-976. doi: 10.1038/nature05223
    [82] YOSHINO T, MATSUZAKI T, SHATSKIY A, et al.The effect of water on the electrical conductivity of olivine aggregates and its implications for the electrical structure of the upper mantle[J]. Earth Planet Sci Lett, 2009, 288(1/2):291-300. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bf97bddd11eac3737a969949ad5e9ec0
    [83] POE B T, ROMANO C, NESTOLA F, et al.Electrical conductivity anisotropy of dry and hydrous olivine at 8 GPa[J]. Phys Earth Planet Inter, 2010, 181(3/4), 103-111. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=59cdb59a55ca718523a3045b2f5227d0
    [84] DAI L D, KARATO S I.High and highly anisotropic electrical conductivity of the asthenosphere due to hydrogen diffusion in olivine[J]. Earth Planet Sci Lett, 2014, 408:79-86. doi: 10.1016/j.epsl.2014.10.003
    [85] DAI L D, KARATO S I.Influence of oxygen fugacity on the electrical conductivity of hydrous olivine:implications for the mechanism of conduction[J]. Phys Earth Planet Inter, 2014, 232:57-60. doi: 10.1016/j.pepi.2014.04.003
    [86] DAI L D, KARATO S I.The effect of pressure on the electrical conductivity of olivine under the hydrogen-rich conditions[J]. Phys Earth Planet Inter, 2014, 232:51-56. doi: 10.1016/j.pepi.2014.03.010
    [87] YANG X Z, HEIDELBACH F.Grain size effect on the electrical conductivity of clinopyroxene[J]. Contrib Mineral Petrol, 2012, 163(6):939-947. doi: 10.1007/s00410-011-0707-3
    [88] YANG X Z, MCCAMMON C.Fe3+-rich augite and high electrical conductivity in the deep lithosphere[J]. Geology, 2012, 40(2):131-134. doi: 10.1130/G32725.1
    [89] ZHAO C C, YOSHINO T.Electrical conductivity of mantle clinopyroxene as a function of water content and its implication on electrical structure of uppermost mantle[J]. Earth Planet Sci Lett, 2016, 447:1-9. doi: 10.1016/j.epsl.2016.04.028
    [90] DAI L D, KARATO S I.Electrical conductivity of orthopyroxene:implications for the water content of the asthenosphere[J]. Proc Jpn Acad Ser B, 2009, 85(10):466-475. doi: 10.2183/pjab.85.466
    [91] ZHANG B H, YOSHINO T, WU X P, et al.Electrical conductivitity of enstatite as a function of water content:implications for the electrical structure in the upper mantle[J]. Earth Planet Sci Lett, 2012, 357:11-20. http://www.sciencedirect.com/science/article/pii/S0012821X1200516X
    [92] ZHANG B H, YOSHINO T.Effect of temperature, pressure and iron content on the electrical conductivity of orthopyroxene[J]. Contrib Mineral Petrol, 2016, 171(12):102. doi: 10.1007/s00410-016-1315-z
    [93] DAI L D, KARATO S I.Electrical conductivity of pyrope-rich garnet at high temperature and high pressure[J]. Phys Earth Planet Inter, 2009, 176(1/2):83-88. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7dba70ba122137bda6f60d58e096d5d6
    [94] GUSEINOV A A, GARGATSEV I O, GABITOVA R U.Electrical conductivity of phlogopites at high temperatures[J]. Izv Phys Solid Earth, 2005, 41(8):670-679.
    [95] LI Y, YANG X Z, YU J H, et al.Unusually high electrical conductivity of phlogopite:the possible role of fluorine and geophysical implications[J]. Contrib Mineral Petrol, 2016, 171(4):37. doi: 10.1007/s00410-016-1252-x
    [96] HUANG X G, XU Y S, KARATO S I.Water content in the transition zone from electrical conductivity of wadsleyite and ringwoodite[J]. Nature, 2005, 434(7034):746-749. doi: 10.1038/nature03426
    [97] ROMANO C, POE B T, KREIDIE N, et al.Electrical conductivities of pyrope-almandine garnets up to 19 GPa and 1 700 ℃[J]. Am Mineral, 2006, 91(8/9):1371-1377.
    [98] YOSHINO T, MANTHILAKE G, MATSUZAKI T, et al.Dry mantle transition zone inferred from the conductivity of wadsleyite and ringwoodite[J]. Nature, 2008, 451(7176):326-329. doi: 10.1038/nature06427
    [99] DAI L D, KARATO S I.Electrical conductivity of wadsleyite at high temperatures and high pressures[J]. Earth Planet Sci Lett, 2009, 287(1/2):277-283. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3ec8cb1f6af06e0c6d924164982356bd
    [100] YOSHINO T, KATSURA T.Effect of iron content on electrical conductivity of ringwoodite, with implications for electrical structure in the transition zone[J]. Phys Earth Planet Inter, 2009, 174(1):3-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b5b58f61b021a8e931a57f5c42db5277
    [101] YOSHINO T, NISHI M, MATSUZAKI T, et al.Electrical conductivity of majorite garnet and its implications for electrical structure in the mantle transition zone[J]. Phys Earth Planet Inter, 2008, 170(3/4):193-200. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1d65c04652d91b508cb2af7f6daadbf9
    [102] OHTA K, ONODA S, HIROSE K, et al.The electrical conductivity of post-perovskite in Earth's D″ layer[J]. Science, 2008, 320(5872):89-91. doi: 10.1126/science.1155148
    [103] YOSHINO T, YAMAZAKI D, ITO E, et al.No interconnection of ferro-periclase in post-spinel phase inferred from conductivity measurement[J]. Geophys Res Lett, 2008, 35(22):L22303. doi: 10.1029/2008GL035932
    [104] YOSHINO T, KAMADA S, ZHAO C C, et al.Electrical conductivity model of Al-bearing bridgmanite with implications for the electrical structure of the Earth's lower mantle[J]. Earth Planet Sci Lett, 2016, 434:208-219. doi: 10.1016/j.epsl.2015.11.032
    [105] POTAPKIN V, MCCAMMON C, GLAZYRIN K, et al.Effect of iron oxidation state on the electrical conductivity of the Earth's lower mantle[J]. Nature Commun, 2013, 4(5):1427. http://www.nature.com/ncomms/journal/v4/n2/full/ncomms2436.html
    [106] SINMYO R, PESCE G, GREENBERG E, et al.Lower mantle electrical conductivity based on measurements of Al, Fe-bearing perovskite under lower mantle conditions[J]. Earth Planet Sci Lett, 2014, 393:165-172. doi: 10.1016/j.epsl.2014.02.049
    [107] XU Y S, MCCAMMON C, POE B T.The effect of alumina on the electrical conductivity of silicate perovskite[J]. Science, 1998, 282(5390):922-924. doi: 10.1126/science.282.5390.922
    [108] 谢鸿森.地球深部物质科学导论[M].北京:科学出版社, 1997.
    [109] ANTONANGELI D, SIEBERT J, ARACNE C M, et al.Spin crossover in ferropericlase at high pressure:a seismologically transparent transition?[J]. Science, 2011, 331(6013):64-67. doi: 10.1126/science.1198429
    [110] MURAKAMI M, OHISHI Y, HIRAO N, et al.A perovskitic lower mantle inferred from high-pressure, high-temperature sound velocity data[J]. J Geol Soc India, 2012, 80(1):147-147. http://www.nature.com/nature/journal/v485/n7396/abs/nature11004.html
    [111] 徐济安.一个等温状态方程[J].物理学报, 1976, 25(4):324-326. doi: 10.3321/j.issn:1000-3290.1976.04.007

    XU J A.An isothermal equation of state for solids[J]. Acta Physica Sinica, 1976, 25(4):324-326. doi: 10.3321/j.issn:1000-3290.1976.04.007
    [112] 熊大和, MING L C, MANGHNANI M H.钙钛矿(CaTiO3)高压相变及等温压缩[J].高压物理学报, 1988, 2(1):1-9. http://www.gywlxb.cn/CN/abstract/abstract296.shtml

    XIONG D H, MING L C, MANGHNANI M H.High-pressure phase transition and constant-temperature compression of caiclum titanate ore[J]. Chinese Journal of High Pressure Physics, 1988, 2(1):1-9. http://www.gywlxb.cn/CN/abstract/abstract296.shtml
    [113] MAO Z, FAN D W, LIN J F, et al.Elasticity of single-crystal olivine at high pressures and temperatures[J]. Earth Planet Sci Lett, 2015, 426:204-215. doi: 10.1016/j.epsl.2015.06.045
    [114] 秦霏, 王英, 巫翔, 等.天然橄榄石单晶的压缩性[J].高压物理学报, 2016, 30(1):20-26. http://www.gywlxb.cn/CN/abstract/abstract1845.shtml

    QIN F, WANG Y, WU X, et al.Compressibility of natural olivine single-crystals[J]. Chinese Journal of High Pressure Physics, 2016, 30(1):20-26. http://www.gywlxb.cn/CN/abstract/abstract1845.shtml
    [115] XU J G, ZHANG D Z, FAN D W, et al.Isosymmetric pressure-induced bonding increase changes compression behavior of clinopyroxenes across jadeite-aegirine solid solution in subduction zones[J]. J Geophys Res, 2017, 122(1):142-157. doi: 10.1002/2016JB013502
    [116] XU J G, ZHANG D Z, DERA P, et al.Experimental evidence for the survival of augite to transition zone depths, and implications for subduction zone dynamics[J]. Am Mineral, 2017, 102(7):1516-1524. doi: 10.2138/am-2017-5959
    [117] XU Z S, MA M N, LI B S, et al.The elasticity of natural hypersthene and the effect of Fe and Al substitution[J]. High Pressure Res, 2016, 36(1):63-72. doi: 10.1080/08957959.2015.1136623
    [118] FAN D W, XU J G, MA M N, et al.P-V-T equation of state of spessartine-almandine solid solution measured using a diamond anvil cell and in situ synchrotron X-ray diffraction[J]. Phys Chem Mineral, 2015, 42(1):63-72. doi: 10.1007/s00269-014-0700-2
    [119] FAN D W, KUANG Y Q, XU J G, et al.Thermoelastic properties of grossular-andradite solid solution at high pressures and temperatures[J]. Phys Chem Mineral, 2017, 44(2):137-147. doi: 10.1007/s00269-016-0843-4
    [120] FAN D W, XU J G, MA M N, et al.P-V-T equation of state of Ca3Cr2Si3O12 uvarovite garnet by using a diamond-anvil cell and in-situ synchrotron X-ray diffraction[J]. Am Mineral, 2015, 100(2/3):588-597. doi: 10.1007/s00410-014-1097-0
    [121] FAN D W, LU C, XU J G, et al.Effects of water on P-V-T equation of state of pyrope[J]. Phys Earth Planet Inter, 2017, 267:9-18. doi: 10.1016/j.pepi.2017.03.005
    [122] LIU X, XIONG Z, SHIEH S R, et al.Non-monotonic compositional dependence of isothermal bulk modulus of the (Mg1-xMnx)Cr2O4 spinel solid solutions, and its origin and implication[J]. Solid Earth Sciences, 2016, 1(3):89-100. doi: 10.1016/j.sesci.2016.08.001
    [123] XIONG Z, LIU X, SHIEH S R, et al.Equation of state of a synthetic ulvöspinel, (Fe1.94Ti0.03)Ti1.00O4.00, at ambient temperature[J]. Phys Chem Mineral, 2015, 42(3):171-177. doi: 10.1007/s00269-014-0704-y
    [124] LV M D, LIU X, SHIEH S R, et al.Equation of state of synthetic qandilite Mg2TiO4 at ambient temperature[J]. Phys Chem Mineral, 2016, 43(4):301-306. doi: 10.1007/s00269-015-0794-1
    [125] ZHANG Y, LIU X, SHIEH S R, et al.Spinel and post-spinel phase assemblages in Zn2TiO4:an experimental and theoretical study[J]. Phys Chem Mineral, 2017, 44(2):109-123. doi: 10.1007/s00269-016-0841-6
    [126] ZHAI S M, YIN Y, SHIEH S R, et al.High-pressure X-ray diffraction and Raman spectroscopy of CaFe2O4-type β-CaCr2O4[J]. Phys Chem Mineral, 2016, 43(4):307-314. doi: 10.1007/s00269-015-0795-0
    [127] GAO J, ZHU F, LAI X J, et al.Compressibility of a natural smithsonite ZnCO3 up to 50 GPa[J]. High Pressure Res, 2014, 34(1):89-99. doi: 10.1080/08957959.2013.868454
    [128] GAO J, WU X, QIN S, et al.Pressure-induced phase transformations of PbCO3 by X-ray diffraction and Raman spectroscopy[J]. High Pressure Res, 2016, 36(1):1-15. doi: 10.1080/08957959.2015.1118475
    [129] 高静, 王英, 巫翔, 等.单晶菱锰矿的压缩性研究及方解石型碳酸盐的高压行为[J].岩石矿物学杂志, 2016, 35(5):877-884. doi: 10.3969/j.issn.1000-6524.2016.05.010

    GAO J, WANG Y, WU X, et al.Compressibility of single-crystal rhodochrosite and high-pressure behavior of calcite-type carbonates[J]. Acta Petrologica et Mineralogica, 2016, 35(5):877-884. doi: 10.3969/j.issn.1000-6524.2016.05.010
    [130] XU J G, KUANG Y Q, ZHANG B, et al.High pressure study of azurite Cu3(CO3)2(OH)2 by synchrotron radiation X-ray diffraction and Raman spectroscopy[J]. Phys Chem Mineral, 2015, 42(10):805-816. doi: 10.1007/s00269-015-0764-7
    [131] WANG M, LIU Q, NIE S, et al.High-pressure phase transitions and compressibilities of aragonite-structure carbonates:SrCO3 and BaCO3[J]. Phys Chem Mineral, 2015, 42(6):517-527. doi: 10.1007/s00269-015-0740-2
    [132] HE Q, LIU X, LI B, et al.Expansivity and compressibility of strontium fluorapatite and barium fluorapatite determined by in situ X-ray diffraction at high-T/P conditions:significance of the M-site cations[J]. Phys Chem Mineral, 2013, 40(4):349-360. doi: 10.1007/s00269-013-0576-6
    [133] FAN D W, WEI S Y, LIU J, et al.X-ray diffraction study of calcium-lead fluorapatite solid solution at high pressure:the composition dependence of the bulk modulus and its pressure derivative[J]. High Temp-High Pressure, 2013, 42(2):69-80. http://english.gyig.cas.cn/ps/rpAbstracts/201305/t20130524_102466.html
    [134] WEI S Y, MA M N, FAN D W, et al.Compressibility of mimetite and pyromorphite at high pressure[J]. High Pressure Res, 2013, 33(1):27-34. doi: 10.1080/08957959.2013.765003
    [135] FAN D W, MA M N, WEI S Y, et al.In-situ synchrotron powder X-ray diffraction study of vanadinite at room temperature and high pressure[J]. High Temp-High Pressure, 2013, 42(5):441-449. http://english.gyig.cas.cn/ps/rpAbstracts/201311/t20131128_113493.html
    [136] FAN D W, MA M N, WEI S Y, et al.High-pressure elastic behavior of Ca4La6(SiO4)6(OH)2 a synthetic rare-earth silicate apatite:a powder X-ray diffraction study up to 9.33 GPa[J]. Phys Chem Mineral, 2014, 41(2):85-90. doi: 10.1007/s00269-013-0626-0
    [137] ZHAI S M, YAMAZAKI D, XUE W H, et al.P-V-T relations of γ-Ca3(PO4)2 tuite determined by in situ X-ray diffraction in a large-volume high-pressure apparatus[J]. Am Mineral, 2013, 98(10):1811-1816. doi: 10.2138/am.2013.4403
    [138] QIN F, WU X, WANG Y, et al.High-pressure behavior of natural single-crystal epidote and clinozoisite up to 40 GPa[J]. Phys Chem Mineral, 2016, 43(9):649-659. doi: 10.1007/s00269-016-0824-7
    [139] YE Y, JACOBSEN S D, MAO Z, et al.Crystal structure, thermal expansivity, and elasticity of OH-chondrodite:trends among dense hydrous magnesium silicates[J]. Contrib Mineral Petrol, 2015, 169(4):43. doi: 10.1007/s00410-015-1138-3
    [140] XU J G, KUANG Y Q, ZHANG B, et al.Thermal equation of state of natural tourmaline at high pressure and temperature[J]. Phys Chem Mineral, 2016, 43(5):315-326. doi: 10.1007/s00269-015-0796-z
    [141] XU J G, MA M N, WEI S Y, et al.Equation of state of adamite up to 11 GPa:a synchrotron X-ray diffraction study[J]. Phys Chem Mineral, 2014, 41(7):547-554. doi: 10.1007/s00269-014-0666-0
    [142] LI X Y, MAO Z, SUN N Y, et al.Elasticity of single-crystal superhydrous phase B at simultaneous high pressure-temperature conditions[J]. Geophys Res Lett, 2016, 43(16):8458-8465. doi: 10.1002/2016GL070027
    [143] LIU X, XIONG Z, CHANG L, et al.Anhydrous ringwoodites in the mantle transition zone:their bulk modulus, solid solution behavior, compositional variation, and sound velocity feature[J]. Solid Earth Sci, 2016, 1(1):28-47. doi: 10.1016/j.sesci.2015.09.001
    [144] ZHANG D, DERA P K, ENG P J, et al.High pressure single crystal diffraction at PX.2[J]. J Vis Exp, 2017, 119:54660. http://www.ncbi.nlm.nih.gov/pubmed/28117811
    [145] 李晓东, 李晖, 李鹏善.同步辐射高压单晶衍射实验技术[J].物理学报, 2017, 66(3):036203. http://d.old.wanfangdata.com.cn/Periodical/wlxb201703018

    LI X D, LI H, LI P S.High pressure single-crystal synchrotron X-ray diffraction technique[J]. Acta Physica Sinica, 2017, 66(3):036203. http://d.old.wanfangdata.com.cn/Periodical/wlxb201703018
    [146] HE Q, LIU X, LI B, et al.Thermal equation of state of a natural kyanite up to 8.55 GPa and 1 273 K[J]. Matter Radiat Extremes, 2016, 1(5):269-276. doi: 10.1016/j.mre.2016.07.003
    [147] WANG S Y, SHARMA S K, COONEY T F.Micro-Raman and infrared spectral study of forsterite under high pressure[J]. Am Mineral, 1993, 78(5/6):469-476.
    [148] LIU L G, MERNAGH T P, IRIFUNE T.High pressure Raman spectra of β-Mg2SiO4, γ-Mg2SiO4, MgSiO3-ilmenite and MgSiO3-perovskite[J]. J Phys Chem Solids, 1994, 55(2):185-193. doi: 10.1016/0022-3697(94)90077-9
    [149] GILLET P, FIQUET G, MALEZIEUX J M, et al.High-pressure and high-temperature Raman spectroscopy of end-member garnets:pyrope, grossular and andradite[J]. Eur J Mineral, 1992, 4(4):651-664. doi: 10.1127/ejm/4/4/0651
    [150] FONG M Y, NICOL M.Raman spectrum of calcium carbonate at high pressures[J]. J Chem Phys, 1971, 54(2):579-585. doi: 10.1063/1.1674881
    [151] GILLET P, BIELLMANN C, REYNARD B, et al.Raman spectroscopic studies of carbonates Part Ⅰ:high-pressure and high-temperature behaviour of calcite, magnesite, dolomite and aragonite[J]. Phys Chem Mineral, 1993, 20(1):1-18. doi: 10.1007%2FBF00202245
    [152] MERKEL S, GONCHAROV A F, MAO H K, et al.Raman spectroscopy of iron to 152 gigapascals:implications for Earth's inner core[J]. Science, 2000, 288(5471):1626-1629. doi: 10.1126/science.288.5471.1626
    [153] SUN Q, ZHAO L, LI N, et al.Raman spectroscopic study for the determination of Cl- concentration (molarity scale) in aqueous solutions:application to fluid inclusions[J]. Chem Geol, 2010, 272(1):55-61. http://www.sciencedirect.com/science/article/pii/S0009254110000471
    [154] SHANG L, CHOU I M, BURRUSS R C, et al.Raman spectroscopic characterization of CH4 density over a wide range of temperature and pressure[J]. J Raman Spectrosc, 2014, 45(8):696-702. doi: 10.1002/jrs.v45.8
    [155] REYNARD B, MONTAGNAC G, CARDON H.Raman spectroscopy at high pressure and temperature for the study of the Earth's mantle and planetary minerals[J]. EMU Notes Mineral, 2012, 12:365-388.
    [156] SCHMIDT C, CHOU I M.The hydrothermal diamond anvil cell (HDAC) for Raman spectroscopic studies of geological fluids at high pressures and temperatures[J]. EMU Notes Mineral, 2012, 12:249-278. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0213500398
    [157] GAO R, LI H.Pressure measurement using the R fluorescence peaks and 417 cm-1 Raman peak of an anvil in a sapphire-anvil cell[J]. High Pressure Res, 2012, 32(2):176-185. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dfb39ff7edff406bccd33d058a82b7f9
    [158] 肖万生, 张红, 谭大勇, 等.金红石高温高压相变的Raman光谱特征[J].光谱学与光谱分析, 2007, 27(7):1340-1343. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx200707023

    XIAO W S, ZHANG H, TAN D Y, et al.Raman characterization of rutile phase transitions under high-pressure and high-temperature[J]. Spectroscopy and Spectral Analysis, 2007, 27(7):1340-1343. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx200707023
    [159] 张红, 肖万生, 谭大勇, 等.斜锆石(ZrO2)高温高压相变的Raman光谱研究[J].高压物理学报, 2007, 21(3):264-268. doi: 10.3969/j.issn.1000-5773.2007.03.008

    ZHANG H, XIAO W S, TAN D Y, et al.Investigation of phase transitions of ZrO2 under high-pressure and high-temperature conditions by Raman spectroscopy[J]. Chinese Journal of High Pressure Physics, 2007, 21(3):264-268. doi: 10.3969/j.issn.1000-5773.2007.03.008
    [160] 谢超, 杜建国, 崔月菊, 等.1.0~4.4 GPa下奥长石拉曼光谱特征的变化[J].光谱与光谱分析, 2012, 32(3):691-694. http://www.cnki.com.cn/Article/CJFDTotal-GUAN201203028.htm

    XIE C, DU J G, CUI Y J, et al.Variation of Raman spectra of oligoclase under 1.0~4.4 GPa[J]. Spectroscopy and Spectral Analysis, 2012, 32(3):691-694. http://www.cnki.com.cn/Article/CJFDTotal-GUAN201203028.htm
    [161] 郑海飞, 乔二伟, 杨玉萍, 等.拉曼光谱方法测量流体包裹体的内压及其应用[J].地学前缘, 2009, 16(1):1-5. doi: 10.3321/j.issn:1005-2321.2009.01.001

    ZHENG H F, QIAO E W, YANG Y P, et al.Determination of inner pressure for fluid inclusion by Raman spectroscopy and its application[J]. Earth Science Frontiers, 2009, 16(1):1-5. doi: 10.3321/j.issn:1005-2321.2009.01.001
    [162] 刘川江, 郑海飞.高温高压下方解石相转变的拉曼光谱原位实验研究[J].光谱学与光谱分析, 2012, 32(2):378-382. doi: 10.3964/j.issn.1000-0593(2012)02-0378-05

    LIU C J, ZHENG H F.In situ experimental study of phase transition of calcite by Raman spectroscopy at high temperature and high pressure[J]. Spectroscopy and Spectral Analysis, 2012, 32(2):378-382. doi: 10.3964/j.issn.1000-0593(2012)02-0378-05
    [163] 王世霞, 郑海飞.高温高压条件下水镁石相变的拉曼光谱研究[J].矿物学报, 2012, 32(3):349-352. http://d.old.wanfangdata.com.cn/Periodical/kwxb201203003

    WANG S X, ZHENG H F.Research on Raman spectra of brucite at high temperature and pressure[J]. Acta Mineralogica Sinica, 2012, 32(3):349-352. http://d.old.wanfangdata.com.cn/Periodical/kwxb201203003
    [164] YUAN X, ZHENG H.In situ Raman spectroscopic studies of FeS2 pyrite up to 675 K and 2 100 MPa using a hydrothermal diamond anvil cell[J]. Mineral Mag, 2015, 79(1):1-10. doi: 10.1180/minmag.2015.079.1.01
    [165] 唐俊杰, 刘曦, 熊志华, 等.蓝柱石的高温X射线衍射、差热-热重分析、偏振红外光谱和高压拉曼光谱研究[J].矿物岩石地球化学通报, 2014, 33(3):289-298. doi: 10.3969/j.issn.1007-2802.2014.03.016

    TANG J J, LIU X, XIONG Z H, et al.High temperature X-ray diffraction, DSC-TGA, polarized FTIR and high pressure Raman spectroscopy studies on euclase[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2014, 33(3):289-298. doi: 10.3969/j.issn.1007-2802.2014.03.016
    [166] GAO J, HUANG W, WU X, et al.Compressibility of carbonophosphate bradleyite Na3Mg(CO3)(PO4) by X-ray diffraction and Raman spectroscopy[J]. Phys Chem Mineral, 2015, 42(3):191-201. doi: 10.1007/s00269-014-0710-0
    [167] ZHAI S, WU X, ITO E.High-pressure Raman spectra of tuite, γ-Ca3(PO4)2[J]. J Raman Spectrosc, 2010, 41(9):1011-1013. doi: 10.1002/jrs.v41:9
    [168] ZHAI S, LIU A, XUE W, et al.High-pressure Raman spectroscopic studies on orthophosphates Ba3(PO4)2 and Sr3(PO4)2[J]. Solid State Commun, 2011, 151(4):276-279. doi: 10.1016/j.ssc.2010.12.007
    [169] ZHAI S, WU X, XUE W.Pressure-dependent Raman spectra of β-Ca3(PO4)2 whitlockite[J]. Phys Chem Mineral, 2015, 42(4):303-308. doi: 10.1007/s00269-014-0720-y
    [170] ZHAI S, SHIEH S R, XUE W, et al.Raman spectra of stronadelphite Sr5(PO4)3F at high pressures[J]. Phys Chem Mineral, 2015, 42(7):579-585. doi: 10.1007/s00269-015-0745-x
    [171] ZHAI S, YIN Y, SHIEH S R, et al.Raman spectroscopic study of MnAl2O4 galaxite at various pressures and temperatures[J]. Phys Chem Mineral, 2017, 44(3):163-170. doi: 10.1007/s00269-016-0845-2
    [172] 刘锦, 孙樯.金刚石压腔蛇纹石原位拉曼光谱研究[J].光谱学与光谱分析, 2011, 31(2):398-401. doi: 10.3964/j.issn.1000-0593(2011)02-0398-04

    LIU J, SUN Q.In-situ Raman spectroscopic study of serpentine using diamond anvil cell[J]. Spectroscopy and Spectral Analysis, 2011, 31(2):398-401. doi: 10.3964/j.issn.1000-0593(2011)02-0398-04
    [173] BRADY J B.Diffusion data for silicate minerals, glasses, and liquids[M]//Mineral physics & crystallography: a handbook of physical constants.US: American Geophysical Union, 1995: 269-290.
    [174] BÉJINA F, JAOUL O, LIEBERMANN R C.Diffusion in minerals at high pressure:a review[J]. Phys Earth Planet Inter, 2003, 139(1/2):3-20. http://www.sciencedirect.com/science/article/pii/S0031920103001407
    [175] BRADY J B, CHERNIAK D J.Diffusion in minerals:an overview of published experimental diffusion data[J]. Rev Mineral Geochem, 2010, 72(1):899-920. doi: 10.2138/rmg.2010.72.20
    [176] ZHANG B H.An overview of Fe-Mg interdiffusion in mantle minerals[J]. Surv Geophys, 2017, 38(4):727-755. doi: 10.1007/s10712-017-9415-5
    [177] AMMANN M W, BRODHOLT J P, WOOKEY J, et al.First-principles constraints on diffusion in lower-mantle minerals and a weak D″ layer[J]. Nature, 2010, 465(7297):462-465. doi: 10.1038/nature09052
    [178] DE KOKER N, STIXRUDE L.Theoretical computation of diffusion in minerals and melts[J]. Rev Mineral Geochem, 2010, 72(1):971-996. doi: 10.2138/rmg.2010.72.22
    [179] ZHENG Y F, FU B.Estimation of oxygen diffusivity from anion porosity in minerals[J]. Geochem J, 1998, 32(2):71-89. doi: 10.2343/geochemj.32.71
    [180] ZHAO Z F, ZHENG Y F.Diffusion compensation for argon, hydrogen, lead, and strontium in minerals:empirical relationships to crystal chemistry[J]. Am Mineral, 2007, 92(2/3):289-308. http://adsabs.harvard.edu/abs/2007AmMin..92..289Z
    [181] ZHANG B H, WU X P, XU J S, et al.Application of the cBΩ model for the calculation of oxygen self-diffusion coefficients in minerals[J]. J Appl Phys, 2010, 108(5):053505. doi: 10.1063/1.3476283
    [182] ZHANG B H, WU X P, ZHOU R L.Calculation of oxygen self-diffusion coefficients in Mg2SiO4 polymorphs and MgSiO3 perovskite based on the compensation law[J]. Solid State Ion, 2011, 186(1):20-28. doi: 10.1016/j.ssi.2011.01.007
    [183] ZHANG B H, WU X P.Calculation of self-diffusion coefficients in diamond[J]. Appl Phys Lett, 2012, 100(5):051901. doi: 10.1063/1.3680600
    [184] ZHANG B H.Calculation of self-diffusion coefficients in iron[J]. AIP Adv, 2014, 4(1):017128. doi: 10.1063/1.4863462
    [185] ZHANG B H, SHAN S M.Thermodynamic calculations of Fe-Mg interdiffusion in (Mg, Fe)2SiO4 polymorphs and perovskite[J]. J Appl Phys, 2015, 117(5):054906. doi: 10.1063/1.4907576
    [186] ZHANG B H, SHAN S M.Application of the cBΩ model to the calculation of diffusion parameters of Si in silicates[J]. Geochem Geophys Geosyst, 2015, 16(3):705-718. doi: 10.1002/2014GC005551
    [187] ZHANG B H, SHAN S M, WU X P.Modeling H, Na, and K diffusion in plagioclase feldspar by relating point defect parameters to bulk properties[J]. Phys Chem Mineral, 2016, 43(2):151-159. doi: 10.1007/s00269-015-0782-5
    [188] ZHANG Y X.Geochemical kinetics[M]. Princeton:Princeton University Press, 2008.
    [189] ZHANG Y X, CHERNIAK D J.Diffusion in minerals and melts[M]. Washington D C:Mineralogical Society of America, 2010.
    [190] LI B S, LIEBERMANN R C.Indoor seismology by probing the Earth's interior by using sound velocity measurements at high pressures and temperatures[J]. Proc Natl Acad Sci USA, 2007, 104(22):9145-9150. doi: 10.1073/pnas.0608609104
    [191] LI B S, LIEBERMANN R C.Study of the Earth's interior using measurements of sound velocities in minerals by ultrasonic interferometry[J]. Phys Earth Planet Inter, 2014, 233:135-153. doi: 10.1016/j.pepi.2014.05.006
    [192] 周春银, 金振民, 王雁宾, 等.地幔转换带条件下岩石矿物波速测量方法:超声波与多面砧技术的结合[J].地球科学, 2016, 41(9):1451-1460. http://d.old.wanfangdata.com.cn/Periodical/dqkx201609002

    ZHOU C Y, JIN Z M, WANG Y B, et al.Sound velocity measurement of minerals and rocks at mantle transition zone conditions using ultrasonic and multianvil techniques[J]. Earth Science, 2016, 41(9):1451-1460. http://d.old.wanfangdata.com.cn/Periodical/dqkx201609002
    [193] 蒋玺, 周文戈, 刘丛强, 等.1.0 GPa和常温至1 100 ℃条件下角闪石斜长片麻岩的Vp变化:实验测量与理论计算[J].岩石学报, 2008, 24(10):2441-2446. http://d.wanfangdata.com.cn/Periodical/ysxb98200810025

    JIANG X, ZHOU W G, LIU C Q, et al.Compressionai wave velocity for hornblende plagiogneiss at 1.0 GPa and up to 1 100 ℃:measured and calculated results[J]. Acta Petrologica Sinica, 2008, 24(10):2441-2446. http://d.wanfangdata.com.cn/Periodical/ysxb98200810025
    [194] 蒋玺, 安邦, 唐波.高温高压下闪长岩的相变与纵波波速[J].矿物学报, 2012, 32(4):507-514. http://d.old.wanfangdata.com.cn/Periodical/kwxb201204008

    JIANG X, AN B, TANG B.Phase transformation and compressional wave velocities of diorite at high temperature and pressure[J]. Acta Mineralogica Sinica, 2012, 32(4):507-514. http://d.old.wanfangdata.com.cn/Periodical/kwxb201204008
    [195] 蒋玺.高温高压下部分熔融岩石和岩石玻璃弹性波速研究[D].贵阳: 中国科学院地球化学研究所, 2007. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1618898
    [196] ZHOU W, FAN D, LIU Y, et al.Measurements of wave velocity and electrical conductivity of an amphibolite from southwestern margin of the Tarim Basin at pressures to 1.0 GPa and temperatures to 700 ℃:comparison with field observations[J]. Geophys J Int, 2011, 187(3):1393-1404. doi: 10.1111/gji.2011.187.issue-3
    [197] 蒋玺, 谢鸿森, 周文戈, 等.1.0 GPa、高温下岩石熔融玻璃的弹性波速测量及其地球物理意义[J].地学前缘, 2007, 14(3):158-164. doi: 10.3321/j.issn:1005-2321.2007.03.014

    JIANG X, XIE H S, ZHOU W G, et al.Measurement of elastic wave velocities in rock glasses up to 900 ℃ at 1.0 GPa and their geophysical implications[J]. Earth Science Frontiers, 2007, 14(3):158-164. doi: 10.3321/j.issn:1005-2321.2007.03.014
    [198] 蒋玺, 周文戈, 谢鸿森, 等.高温高压下几种岩石熔融玻璃的弹性波速[J].高压物理学报, 2013, 27(4):481-489. http://www.gywlxb.cn/CN/abstract/abstract1594.shtml

    JIANG X, ZHOU W G, XIE H S, et al.Compressional and shear wave velocities of rock glasses up to 2.0 GPa and 1 000 ℃[J]. Chinese Journal of High Pressure Physics, 2013, 27(4):481-489. http://www.gywlxb.cn/CN/abstract/abstract1594.shtml
    [199] DECREMPS F, BELLIARD L, COUZINET B, et al.Liquid mercury sound velocity measurements under high pressure and high temperature by picosecond acoustics in a diamond anvils cell[J]. Rev Sci Instrum, 2009, 80(7):073902. doi: 10.1063/1.3160104
    [200] ASAHARA Y, MURAKAMI M, OHISHI Y, et al.Sound velocity measurement in liquid water up to 25 GPa and 900 K:implications for densities of water at lower mantle conditions[J]. Earth Planet Sci Lett, 2010, 289(3/4):479-485. http://www.sciencedirect.com/science/article/pii/S0012821X09006992
    [201] AYRINHAC S, GAUTHIER M, BOVE L E, et al.Equation of state of liquid mercury to 520 K and 7 GPa from acoustic velocity measurements[J]. J Chem Phys, 2014, 140(24):011011-66. doi: 10.1063/1.4882695
    [202] NISHIDA K, KONO Y, TERASAKI H, et al.Sound velocity measurements in liquid Fe-S at high pressure:implications for Earth's and lunar cores[J]. Earth Planet Sci Lett, 2013, 362:182-186. doi: 10.1016/j.epsl.2012.11.042
    [203] JING Z C, WANG Y B, KONO Y, et al.Sound velocity of Fe-S liquids at high pressure:implications for the Moon's molten outer core[J]. Earth Planet Sci Lett, 2014, 396:78-87. doi: 10.1016/j.epsl.2014.04.015
    [204] SONG W, LIU Y G, WANG Z G, et al.Note:measurement method for sound velocity of melts in large volume press and its application to liquid sodium up to 2.0 GPa[J]. Rev Sci Instrum, 2011, 82(8):086108. doi: 10.1063/1.3625267
    [205] WANG Z G, LIU Y G, ZHOU W G, et al.Sound velocity in water and ice up to 4.2 GPa and 500 K on multi-anvil apparatus[J]. Chin Phys Lett, 2013, 30(5):054302. doi: 10.1088/0256-307X/30/5/054302
    [206] XU L, BI Y, LI X H, et al.Phase diagram of tin determined by sound velocity measurements on multi-anvil apparatus up to 5 GPa and 800 K[J]. J Appl Phys, 2014, 115(16):164903. doi: 10.1063/1.4872458
    [207] ELKINS-TANTON L T.Magma oceans in the inner solar system[J]. Annu Rev Earth Planet Sci, 2012, 40(1):113-139. doi: 10.1146/annurev-earth-042711-105503
    [208] LANGE R A, CARMICHAEL I S E.Densities of Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-TiO2-SiO2 liquids:new measurements and derived partial molar properties[J]. Geochim Cosmochim Acta, 1987, 51(11):2931-2946. doi: 10.1016/0016-7037(87)90368-1
    [209] LANGE R A.A revised model for the density and thermal expansivity of K2O-Na2O-CaO-MgO-Al2O3-SiO2 liquids from 700 to 1 900 K:extension to crustal magmatic temperatures[J]. Contrib Mineral Petrol, 1997, 130(1):1-11. doi: 10.1007/s004100050345
    [210] GUO X, LANGE R A, AI Y.The density and compressibility of CaO-FeO-SiO2 liquids at one bar:evidence for four-coordinated Fe2+ in the CaFeO2 component[J]. Geochim Cosmochim Acta, 2013, 120:206-219. doi: 10.1016/j.gca.2013.06.007
    [211] GUO X, LANGE R A, AI Y.Density and sound speed measurements on model basalt (An-Di-Hd) liquids at one bar:new constraints on the partial molar volume and compressibility of the FeO component[J]. Earth Planet Sci Lett, 2014, 388:283-292. doi: 10.1016/j.epsl.2013.12.005
    [212] MATSUKAGE K N, JING Z C, KARATO S.Density of hydrous silicate melt at the conditions of Earth's deep upper mantle[J]. Nature, 2005, 438(7067):488-491. doi: 10.1038/nature04241
    [213] MALFAIT W J, SEIFERT R, PETITGIRARD S, et al.The density of andesitic melts and the compressibility of dissolved water in silicate melts at crustal and upper mantle conditions[J]. Earth Planet Sci Lett, 2014, 393:31-38. doi: 10.1016/j.epsl.2014.02.042
    [214] THOMAS C W, ASIMOW P D.Preheated shock experiments in the molten CaAl2Si2O8-CaFeSi2O6-CaMgSi2O6 ternary:a test for linear mixing of liquid volumes at high pressure and temperature[J]. J Geophys Res, 2013, 118(7):3354-3365. doi: 10.1002/jgrb.50269
    [215] 倪怀玮.硅酸盐熔体的物理化学性质研究进展及其应用[J].科学通报, 2013, 58(10):865-890. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20132013052100039544

    NI H W.Advances and application in physicochemical properties of silicate melts[J]. Chinese Science Bulletin, 2013, 58(10):865-890. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20132013052100039544
    [216] HUI H, ZHANG Y.Toward a general viscosity equation for natural anhydrous and hydrous silicate melts[J]. Geochim Cosmochim Acta, 2007, 71(2):403-416. doi: 10.1016/j.gca.2006.09.003
    [217] NI H W, KEPPLER H, MANTHILAKE M A G M, et al.Electrical conductivity of dry and hydrous NaAlSi3O8 glasses and liquids at high pressures[J]. Contrib Mineral Petrol, 2011, 162(3):501-513. doi: 10.1007/s00410-011-0608-5
    [218] GUO X, ZHANG L, BEHRENS H, et al.Probing the status of felsic magma reservoirs:constraints from the P-T-H2O dependences of electrical conductivity of rhyolitic melt[J]. Earth Planet Sci Lett, 2016, 433:54-62. doi: 10.1016/j.epsl.2015.10.036
    [219] NI H W, XU Z J, ZHANG Y X.Hydroxyl and molecular H2O diffusivity in a haploandesitic melt[J]. Geochim Cosmochim Acta, 2013, 103:36-48. doi: 10.1016/j.gca.2012.10.052
    [220] ZHANG Y X, NI H W.Diffusion of H, C, and O components in silicate melts[J]. Rev Mineral Geochem, 2010, 72(1):171-225. http://adsabs.harvard.edu/abs/2010RvMG...72..171Z
    [221] ZHANG Y X, NI H W, CHEN Y.Diffusion data in silicate melts[J]. Rev Mineral Geochem, 2010, 72(1):311-408. doi: 10.2138/rmg.2010.72.8
    [222] NI H W, HUI H J, STEINLE-NEUMANN G.Transport properties of silicate melts[J]. Rev Geophys, 2015, 53(3):715-744. doi: 10.1002/2015RG000485
    [223] WEISS Y, MCNEILL J, PEARSON D G, et al.Highly saline fluids from a subducting slab as the source for fluid-rich diamonds[J]. Nature, 2015, 524(7565):339-342. doi: 10.1038/nature14857
    [224] BALI E, AUDETAT A, KEPPLER H.Water and hydrogen are immiscible in Earth's mantle[J]. Nature, 2013, 495(7440):220-222. doi: 10.1038/nature11908
    [225] SMITH E M, SHIREY S B, NESTOLA F, et al.Large gem diamonds from metallic liquid in Earth's deep mantle[J]. Science, 2016, 354(6318):1403-1405. doi: 10.1126/science.aal1303
    [226] THOMSON A R, WALTER M J, KOHN S C, et al.Slab melting as a barrier to deep carbon subduction[J]. Nature, 2016, 529(7548):76-79. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=29dbe13617feae5cd091693a8fba7cf9
    [227] 卢焕章, 范宏瑞, 倪培, 等.流体包裹体[M].北京:科学出版社, 2004.
    [228] WERNET PH, NORDLUND D, BERGMANN U, et al.The structure of the first coordination shell in liquid water[J]. Science, 2004, 304(5673):995-999. doi: 10.1126/science.1096205
    [229] SELLBERG J A, HUANG C, MCQUEEN T A, et al.Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature[J]. Nature, 2014, 510(7505):381-384. doi: 10.1038/nature13266
    [230] SUN Q.Local statistical interpretation for water structure[J]. Chem Phys Lett, 2013, 568(5):90-94. http://www.sciencedirect.com/science/article/pii/S0009261413004120
    [231] SUN Q, WANG Q Q, DING D Y.Hydrogen bonded networks in supercritical water[J]. J Phys Chem B, 2014, 118(38):11253-11258. doi: 10.1021/jp503474s
    [232] 张荣华, 张雪彤, 胡书敏.临界区流体与矿物和岩石在地球内部极端条件下的反应[J].地学前缘, 2009, 16(1):53-67. doi: 10.3321/j.issn:1005-2321.2009.01.008

    ZHANG R H, ZHANG X T, HU S M.Critical fluids and mineral (rock) interactions in extreme conditions of the Earth interior[J]. Earth Science Frontiers, 2009, 16(1):53-67. doi: 10.3321/j.issn:1005-2321.2009.01.008
    [233] ULRICH T, GUNTHER D, HEINRICH C A.Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits[J]. Nature, 1999, 399(6737):676-679. doi: 10.1038/21406
    [234] WILLIAMS-JONES A E, HEINRICH C A.Vapor transport of metals and the formation of magmatic-hydrothermal ore deposits[J]. Econ Geol, 2005, 100(7):1287-1312. doi: 10.2113/gsecongeo.100.7.1287
    [235] YANG X Z, KEPPLER H, LI Y.Molecular hydrogen in mantle minerals[J]. Geochem Perspect Lett, 2016, 2:160-168.
    [236] LI Y.Immiscible C-H-O fluids formed at subduction zone conditions[J]. Geochem Perspect Lett, 2017, 3:12-21. https://www.geochemicalperspectivesletters.org/article1702
    [237] WU X, LIN J F, KAERCHER P, et al.Seismic anisotropy of the D″ layer induced by (001) deformation of post-perovskite[J]. Nat Commun, 2017, 8:14669. doi: 10.1038/ncomms14669
    [238] XU C, KYNICKý J, TAO R, et al.Recovery of an oxidized majorite inclusion from Earth's deep asthenosphere[J]. Sci Adv, 2017, 3(4):e1601589. doi: 10.1126/sciadv.1601589
    [239] MAO H K, CHEN B, CHEN J, et al.Recent advances in high-pressure science and technology[J]. Matter Radiat Extremes, 2016, 1(1):59-75. doi: 10.1016/j.mre.2016.01.005
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  11253
  • HTML全文浏览量:  4769
  • PDF下载量:  1279
出版历程
  • 收稿日期:  2017-07-11
  • 修回日期:  2017-07-17

目录

    /

    返回文章
    返回