Detonation Modification of Multi-Walled Carbon Nanotubes
-
摘要: 为研究爆轰反应对多壁碳纳米管(MWCNTs)形貌与物相的影响,将按一定质量配比制备的MWCNTs混合炸药在密闭的反应釜内引爆,并利用透射电镜和X射线衍射仪对爆轰前、后MWCNTs的形貌与物相分别进行了表征。结果发现:MWCNTs的质量分数在30%~40%时,混合炸药能够顺利起爆,并可收集到大量的样品;爆轰反应后,MWCNTs的形貌与物相发生了巨大变化,由管状结构变成以碳片、碳棒、碳球为主的结构,并有明显的团聚现象;有少量MWCNTs依附于碳片等结构边缘;样品以不定型碳为主,其石墨化程度远低于初始MWCNTs,并随着MWCNTs质量比的增大,样品的石墨化程度增大。Abstract: In order to study the influence of detonation reaction on the morphology and phase of multi-walled carbon nanotubes (MWCNTs), the mixed explosives, made from MWCNTs and RDX with a given mass ratio, were detonated in the reaction kettle.The samples before and after detonation were characterized using transmission electron microscopy and X-ray diffractometer.The results show that the mixed explosives can be detonated successfully when the mass ratio of MWCNTs ranged in 30%-40%, and a large number of samples can be collected.Moreover, the morphology and phase of MWCNTs show great changes after detonation.The morphologies are transformed into sheet, rod and ball from tubular structure, accompanied with an obvious agglomerate phenomenon, and a small quantity of MWCNTs are located at the edge of the carbon sheet.The samples are mainly amorphous carbon.The degree of graphitization is much less than that of the original MWCNTs, and it increases as the mass ratio of MWCNTs increases in the mixed explosive.
-
表 1 混合炸药配比及实验现象
Table 1. Prescription of mixed explosive and experimental phenomena
No. w1/(%) w2/(%) Phenomena T1 60 40 Exploded, with a large amount of cannon fodder T2 70 30 Exploded, with a small amount of cannon fodder T3 90 10 Exploded, with hardly any cannon fodder T4 50 50 Unexploded -
[1] 辛浩.石墨烯/碳纳米管力学性能的研究[D].广州: 华南理工大学, 2010: 1-7.XIN H.Studies on mechanical properties of graphene and carbon nanotubes[D]. Guangzhou: South China University of Technology, 2010: 1-7. [2] WANG H, LIN K Y, JING B, et al.Removal of oil droplets from contaminated water using magnetic carbon nanotubes[J]. Water Res, 2013, 47(12):4198-4205. doi: 10.1016/j.watres.2013.02.056 [3] LIU T, CHEN S, LIU H.Oil adsorption and reuse performance of multi-walled carbon nanotubes[J]. Procedia Eng, 2015, 102:1896-1902. doi: 10.1016/j.proeng.2015.01.329 [4] KAYVANI FARD A, RHADFI T, MCKAY G, et al.Enhancing oil removal from water using ferric oxide nanoparticles doped carbon nanotubes adsorbents[J]. Chem Eng J, 2016, 293:90-101. doi: 10.1016/j.cej.2016.02.040 [5] 刘涛, 刘会娥, 贺琦, 等.多壁碳纳米管吸油能力和循环使用性探究[J].石油炼制与化工, 2014, 45(11):60-64. doi: 10.3969/j.issn.1005-2399.2014.11.012LIU T, LIU H E, HE Q, et al.Oil adsorption and reuse performance of multi-walled carbon nanotubes[J]. Petroleum Processing and Petrochemicals, 2014, 45(11):60-64. doi: 10.3969/j.issn.1005-2399.2014.11.012 [6] 刘顾, 汪刘应, 程建良, 等.碳纳米管吸波材料研究进展[J].材料工程, 2015, 43(1):104-112. http://d.old.wanfangdata.com.cn/Periodical/clgc201501018LIU G, WANG L Y, CHENG J L, et al.Progress in research on carbon nanotubes microwave absorbers[J]. Journal of Materials Engineering, 2015, 43(1):104-112. http://d.old.wanfangdata.com.cn/Periodical/clgc201501018 [7] 金宇龙, 董胜奎.新型碳纳米管吸波材料研究进展及展望[J].材料导报, 2015, 29(2):19-22. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=CLDB2015S2006&dbname=CJFD&dbcode=CJFQJIN Y L, DONG S K.Research progress and prospect of new type wave absorbing carbon nanotubes[J]. Materials Reviews, 2015, 29(2):19-22. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=CLDB2015S2006&dbname=CJFD&dbcode=CJFQ [8] 王宝民, 宋凯.碳纳米管水泥基复合材料研究进展[J].低温建筑技术, 2011, 33(5):1-4. doi: 10.3969/j.issn.1001-6864.2011.05.001WANG B M, SONG K.Research progress of carbon nanotubes cement-based composite materials[J]. Low Temperature Architecture Technology, 2011, 33(5):1-4. doi: 10.3969/j.issn.1001-6864.2011.05.001 [9] 王宝民, 郭志强, 韩瑜, 等.用于电磁波吸收的碳纳米管水泥基复合材料[J].功能材料, 2013, 44(9):1239-1243. doi: 10.3969/j.issn.1001-9731.2013.09.006WANG B M, GUO Z Q, HAN Y, et al.Cement-based composites filled with carbon nanotubes for electromagnetic wave absorption[J]. Journal of Functional Materials, 2013, 44(9):1239-1243. doi: 10.3969/j.issn.1001-9731.2013.09.006 [10] GAO S J, SHI Z, ZHANG W B, et al.Photoinduced superwetting single-walled carbon nanotube/TiO2 ultrathin network films for ultrafast separation of oil-in-water emulsions[J]. ACS Nano, 2014, 8(6):6344-6352. doi: 10.1021/nn501851a [11] WANG H, WANG H L, JIANG W F, et al.Photocatalytic degradation of 2, 4-dinitrophenol (DNP) by multi-walled carbon nanotubes (MWCNTs)/TiO2 composite in aqueous solution under solar irradiation[J]. Water Res, 2009, 43(1):204-210. doi: 10.1016/j.watres.2008.10.003 [12] ZOUZELKA R, KUSUMAWATI Y, REMZOVA M, et al.Photocatalytic activity of porous multiwalled carbon nanotube-TiO2 composite layers for pollutant degradation[J]. J Hazard Mater, 2016, 317:52-59. doi: 10.1016/j.jhazmat.2016.05.056 [13] 胡晓阳.碳纳米管和石墨烯的制备及应用研究[D].郑州: 郑州大学, 2013: 8-11. http://cdmd.cnki.com.cn/Article/CDMD-10459-1013257866.htmHU X Y.The synthesis and application study of carbon nanotubes and graphene[D]. Zhengzhou: Zhengzhou University, 2013: 8-11. http://cdmd.cnki.com.cn/Article/CDMD-10459-1013257866.htm [14] YANG Y, GRULKE E A, ZHANG Z G, et al.Thermal and rheological properties of carbon nanotube-in-oil dispersions[J]. J Appl Phys, 2006, 99(11):114307. doi: 10.1063/1.2193161 [15] LU Y, ZHU Z P, SU D S, et al.Formation of bamboo-shape carbon nanotubes by controlled rapid decomposition of picric acid[J]. Carbon, 2004, 42(15):3199-3207. doi: 10.1016/j.carbon.2004.08.003 [16] LU Y, ZHU Z P, LIU Z Y.Catalytic growth of carbon nanotubes through CHNO explosive detonation[J]. Carbon, 2004, 42(2):361-370. doi: 10.1016/j.carbon.2003.11.001 [17] LUO N, JING H W.Gaseous detonation fabrication of CNTs and CNTs doping with Fe based composites[J]. Fuller Nanotub Car N, 2016, 24(8):494-499. doi: 10.1080/1536383X.2016.1191012