不同硬度30CrMnSiNi2A钢的动态本构与损伤参数

李磊 张先锋 吴雪 高飞 刘闯

李磊, 张先锋, 吴雪, 高飞, 刘闯. 不同硬度30CrMnSiNi2A钢的动态本构与损伤参数[J]. 高压物理学报, 2017, 31(3): 239-248. doi: 10.11858/gywlxb.2017.03.005
引用本文: 李磊, 张先锋, 吴雪, 高飞, 刘闯. 不同硬度30CrMnSiNi2A钢的动态本构与损伤参数[J]. 高压物理学报, 2017, 31(3): 239-248. doi: 10.11858/gywlxb.2017.03.005
LI Lei, ZHANG Xian-Feng, WU Xue, GAO Fei, LIU Chuang. Dynamic Constitutive and Damage Parameters of 30CrMnSiNi2A Steel with Different Hardnesses[J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 239-248. doi: 10.11858/gywlxb.2017.03.005
Citation: LI Lei, ZHANG Xian-Feng, WU Xue, GAO Fei, LIU Chuang. Dynamic Constitutive and Damage Parameters of 30CrMnSiNi2A Steel with Different Hardnesses[J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 239-248. doi: 10.11858/gywlxb.2017.03.005

不同硬度30CrMnSiNi2A钢的动态本构与损伤参数

doi: 10.11858/gywlxb.2017.03.005
基金项目: 

中共中央组织部青年拔尖人才支持计划 2014

爆炸冲击防灾减灾国家重点实验室(解放军理工大学)开放基金 DPMEIKF201405

详细信息
    作者简介:

    李磊(1990-), 男, 硕士研究生, 主要从事材料动态力学性能及损伤演化研究. E-mail:lilei-njust202@163.com

    通讯作者:

    张先锋(1978-), 男, 博士, 教授, 主要从事高效毁伤与防护研究.E-mail:lynx@njust.edu.com

  • 中图分类号: O347.3

Dynamic Constitutive and Damage Parameters of 30CrMnSiNi2A Steel with Different Hardnesses

  • 摘要: 为研究材料硬度对30CrMnSiNi2A钢动态本构与损伤参数的影响,基于万能材料试验机、分离式霍普金森压杆(SHPB)实验装置,研究了4种不同硬度30CrMnSiNi2A钢的准静态和动态力学性能。利用屈服强度与应变率、等效塑性应变的关系确定了Johnson-Cook强度模型参数,通过失效应变与应力三轴度、应变率的关系确定了Johnson-Cook失效模型参数,分析了强度模型和失效模型中参数的变化规律。结果表明:随着硬度的增加,30CrMnSiNi2A钢的塑性减弱,脆性增强,应变率敏感性减弱;硬度对30CrMnSiNi2A钢的动态本构与损伤参数有显著影响。

     

  • 图  不同硬度试件的真实应力-应变关系

    Figure  1.  True stress-true strain curves of specimens with different hardnesses

    图  实验前、后的试件对比

    Figure  2.  Comparison of original with deformed specimens

    图  拉伸试件的外形和尺寸

    Figure  3.  Geometry and dimension of tensile specimen

    图  拉伸实验后不同硬度试件的形貌

    Figure  4.  Fractured specimens with different hardnesses

    图  拉伸实验后试件的断口形貌

    Figure  5.  Facture morphology of different tensile specimens

    图  缺口拉伸试件尺寸及外形

    Figure  6.  Geometry and dimension of pre-notched cylinder specimens

    图  在不同应变率下不同硬度试件的应力-应变关系

    Figure  7.  Stress-true strain curves of specimens with different hardnesses at different strain rates

    图  应力-应变曲线的实验结果与拟合结果对比

    Figure  8.  Comparison of experimental data with fitted result of stress versus strain

    图  J-C本构模型参数与硬度的关系

    Figure  9.  J-C constitutive model parameters vs.hardness

    图  10  J-C失效模型参数与硬度的关系

    Figure  10.  J-C failure model parameters vs.hardness

    表  1  30CrMnSiNi2A钢的化学成分(质量分数)

    Table  1.   Composition of 30CrMnSiNi2A steel (Mass fraction)

    (%)
    C Si Mn Cr Ni Cu P S
    0.300 1.040 1.160 1.030 1.680 0.080 0.014 0.020
    下载: 导出CSV

    表  2  拉伸实验结果

    Table  2.   Results of tensile experiments

    Specimen No. HRC εf
    1×10-4 s-1 1×10-3 s-1 1×10-2 s-1
    31 1.0207 1.0478 1.1129
    36 0.9478 0.9843 1.0055
    45 0.8393 0.8655 0.8850
    55 0.0409 0.0642 0.0740
    下载: 导出CSV

    表  3  缺口拉伸实验结果

    Table  3.   Tensile experiment results of pre-notched specimens

    Specimen No. HRC εf
    R=3 mm
    (η=0.9385)
    R=6 mm
    (η=0.6806)
    R=9 mm
    (η=0.5781)
    R→∞
    (η=0.3333)
    31 0.4968 0.6319 0.7236 1.0478
    36 0.4024 0.4852 0.5789 0.9843
    45 0.2456 0.2797 0.3321 0.8655
    55 0.0228 0.0269 0.0404 0.0642
    下载: 导出CSV

    表  4  不同硬度的试件在不同应变率下的屈服强度

    Table  4.   Yield strength of specimens with different hardnesses at different strain rates

    Specimen No. HRC ${\dot \varepsilon }$/(s-1) σyd/(MPa)
    31 1600
    3050
    4100
    6500
    892
    916
    935
    949
    36 1300
    2150
    3400
    5500
    947
    968
    989
    1012
    45 1200
    2200
    3500
    5200
    1495
    1515
    1534
    1550
    55 1250
    1650
    2700
    4250
    1878
    1896
    1911
    1926
    下载: 导出CSV

    表  5  不同硬度试件的kr

    Table  5.   k and r of specimens with different hardnesses

    Specimen No. HRC k r/(s-1)
    31 94760 0.697
    36 125222 0.678
    45 552721 0.575
    55 7725663 0.343
    下载: 导出CSV

    表  6  不同硬度试件的J-C模型参数

    Table  6.   J-C model parameters of specimens with different hardnesses

    Specimen No. HRC A/(MPa) B/(MPa) n C D1 D2 D3 D4
    31 742 623.11 0.424 0.061 0.351 1.650 2.589 0.020
    36 814 643.57 0.446 0.055 0.348 2.673 4.333 0.012
    45 1269 810.18 0.479 0.040 0.239 8.593 7.867 0.009
    55 1516 1537.97 0.610 0.017 0.014 0.015 3.251 0.007
    下载: 导出CSV
  • [1] 武海军, 姚伟, 黄风雷, 等.超高强度钢30CrMnSiNi2A动态力学性能试验研究[J].北京理工大学学报, 2010, 30(3):258-262. http://www.cnki.com.cn/Article/CJFDTotal-BJLG201003003.htm

    WU H J, YAO W, HUANG F L, et al.Experimental study on dynamic mechanical properties of ultrahigh strength 30CrMnSiNi2A steel[J].Transactions of Beijing Institute of Technology, 2010, 30(3):258-262. http://www.cnki.com.cn/Article/CJFDTotal-BJLG201003003.htm
    [2] 吴广, 冯顺山, 董永香, 等.不同硬度弹丸对中厚靶板作用的试验研究[J].兵工学报, 2010, 31(增刊1):260-263. http://d.old.wanfangdata.com.cn/Conference/7151862

    WU G, FENG S S, DONG Y X, et al.Experimental study on penetration effects of projectiles with different hardnesses on target[J].Acta Armamentarii, 2010, 31(Suppl 1):260-263. http://d.old.wanfangdata.com.cn/Conference/7151862
    [3] 周义清, 张治民.30CrMnSiNi2A钢在不同应变率下的力学性能研究[J].兵器材料科学与工程, 2010, 33(4):46-50. doi: 10.3969/j.issn.1004-244X.2010.04.013

    ZHOU Y Q, ZHANG Z M.Mechanical property of 30CrMnSiNi2A steel under various strain rates[J].Ordnance Material Science and Engineering, 2010, 33(4):46-50. doi: 10.3969/j.issn.1004-244X.2010.04.013
    [4] WEERASOORIYA T, MOY P.Effect of strain-rate on the deformation behavior of rolled-homogeneous armor (RHA) steel at different hardnesses[C]//Proceedings of the 2004 SEM International Congress and Exposition on Experimental Mechanics.Costa Mesa, 2004.
    [5] WIERZBICKI T, BAO Y, LEE Y W, et al.Calibration and evaluation of seven fracture models[J].Int J Mech Sci, 2005, 47(4/5):719-743. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=126fe80bf84920c01d800b02c18720a4
    [6] TENG X, WIERZBICKI T.Evaluation of six fracture models in high velocity perforation[J].Eng Fract Mech, 2006, 73(12):1653-1678. doi: 10.1016/j.engfracmech.2006.01.009
    [7] 李红英.金属拉伸试样的断口分析[J].山西大同大学学报(自然科学版), 2011, 27(1):76-79. doi: 10.3969/j.issn.1674-0874.2011.01.027

    LI H Y.Fracture analysis of the metal tensile specimen[J].Journal of Shanxi Datong University (Natural Science Edition), 2011, 27(1):76-79. doi: 10.3969/j.issn.1674-0874.2011.01.027
    [8] BRIDGMAN P W.Studies in large plastic flow and fracture[M].New York:McGraw-Hill Book Company, 1952.
    [9] PERZYNA P.Fundamental problems in viscoplasticity[J].Adv Appl Mech, 1966, 9:243-377. doi: 10.1016/S0065-2156(08)70009-7
    [10] JOHNSON G R, COOK W H.A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]//Proceedings of the 7th International Symposium on Ballistics, 1983: 541-547.
    [11] JOHNSON G R, COOK W H.Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J].Eng Fract Mech, 1985, 21(1):31-48. http://www.sciencedirect.com/science/article/pii/0013794485900529
    [12] RICE J R, TRACEY D M.On the ductile enlargement of voids in triaxial stress fields[J].J Mech Phys Solids, 1969, 17(3):201-217. doi: 10.1016/0022-5096(69)90033-7
  • 加载中
图(10) / 表(6)
计量
  • 文章访问数:  6475
  • HTML全文浏览量:  3024
  • PDF下载量:  127
出版历程
  • 收稿日期:  2016-09-06
  • 修回日期:  2016-12-14

目录

    /

    返回文章
    返回