Dynamic Constitutive and Damage Parameters of 30CrMnSiNi2A Steel with Different Hardnesses
-
摘要: 为研究材料硬度对30CrMnSiNi2A钢动态本构与损伤参数的影响,基于万能材料试验机、分离式霍普金森压杆(SHPB)实验装置,研究了4种不同硬度30CrMnSiNi2A钢的准静态和动态力学性能。利用屈服强度与应变率、等效塑性应变的关系确定了Johnson-Cook强度模型参数,通过失效应变与应力三轴度、应变率的关系确定了Johnson-Cook失效模型参数,分析了强度模型和失效模型中参数的变化规律。结果表明:随着硬度的增加,30CrMnSiNi2A钢的塑性减弱,脆性增强,应变率敏感性减弱;硬度对30CrMnSiNi2A钢的动态本构与损伤参数有显著影响。
-
关键词:
- 本构模型 /
- 损伤参数 /
- 30CrMnSiNi2A钢 /
- Johnson-Cook模型 /
- 分离式霍普金森压杆(SHPB)
Abstract: To find out about the effect of hardness on the dynamic behavior and the damage parameters of 30CrMnSiNi2A steel, we investigated the quasi-static and dynamic mechanical properties of different steel alloys with the hardness of 31HRC, 36HRC, 45HRC and 55HRC using a universal material testing machine and a split Hopkinson pressure bar (SHPB).Based on the relationship among the yield strength, the strain rate and the equivalent plastic strain, we determined the parameters of Johnson-Cook constitutive model of 30CrMnSiNi2A steel with different hardnesses.Furthermore, we obtained the parameters of Johnson-Cook failure model for 30CrMnSiNi2A steel by the relationship among the failure strain, the stress triaxiality and the strain rate, and summarized the remarkable influence of the hardness on the parameters of Johnson-Cook constitutive model and failure model of 30CrMnSiNi2A steel.The results show that, as the hardness of 30CrMnSiNi2A steel increases, its plasticity and strain rate sensitivity decreases, but its brittleness increases. -
表 1 30CrMnSiNi2A钢的化学成分(质量分数)
Table 1. Composition of 30CrMnSiNi2A steel (Mass fraction)
(%) C Si Mn Cr Ni Cu P S 0.300 1.040 1.160 1.030 1.680 0.080 0.014 0.020 表 2 拉伸实验结果
Table 2. Results of tensile experiments
Specimen No. HRC εf 1×10-4 s-1 1×10-3 s-1 1×10-2 s-1 Ⅰ 31 1.0207 1.0478 1.1129 Ⅱ 36 0.9478 0.9843 1.0055 Ⅲ 45 0.8393 0.8655 0.8850 Ⅳ 55 0.0409 0.0642 0.0740 表 3 缺口拉伸实验结果
Table 3. Tensile experiment results of pre-notched specimens
Specimen No. HRC εf R=3 mm
(η=0.9385)R=6 mm
(η=0.6806)R=9 mm
(η=0.5781)R→∞
(η=0.3333)Ⅰ 31 0.4968 0.6319 0.7236 1.0478 Ⅱ 36 0.4024 0.4852 0.5789 0.9843 Ⅲ 45 0.2456 0.2797 0.3321 0.8655 Ⅳ 55 0.0228 0.0269 0.0404 0.0642 表 4 不同硬度的试件在不同应变率下的屈服强度
Table 4. Yield strength of specimens with different hardnesses at different strain rates
Specimen No. HRC ${\dot \varepsilon }$/(s-1) σyd/(MPa) Ⅰ 31 1600
3050
4100
6500892
916
935
949Ⅱ 36 1300
2150
3400
5500947
968
989
1012Ⅲ 45 1200
2200
3500
52001495
1515
1534
1550Ⅳ 55 1250
1650
2700
42501878
1896
1911
1926表 5 不同硬度试件的k和r
Table 5. k and r of specimens with different hardnesses
Specimen No. HRC k r/(s-1) Ⅰ 31 94760 0.697 Ⅱ 36 125222 0.678 Ⅲ 45 552721 0.575 Ⅳ 55 7725663 0.343 表 6 不同硬度试件的J-C模型参数
Table 6. J-C model parameters of specimens with different hardnesses
Specimen No. HRC A/(MPa) B/(MPa) n C D1 D2 D3 D4 Ⅰ 31 742 623.11 0.424 0.061 0.351 1.650 2.589 0.020 Ⅱ 36 814 643.57 0.446 0.055 0.348 2.673 4.333 0.012 Ⅲ 45 1269 810.18 0.479 0.040 0.239 8.593 7.867 0.009 Ⅳ 55 1516 1537.97 0.610 0.017 0.014 0.015 3.251 0.007 -
[1] 武海军, 姚伟, 黄风雷, 等.超高强度钢30CrMnSiNi2A动态力学性能试验研究[J].北京理工大学学报, 2010, 30(3):258-262. http://www.cnki.com.cn/Article/CJFDTotal-BJLG201003003.htmWU H J, YAO W, HUANG F L, et al.Experimental study on dynamic mechanical properties of ultrahigh strength 30CrMnSiNi2A steel[J].Transactions of Beijing Institute of Technology, 2010, 30(3):258-262. http://www.cnki.com.cn/Article/CJFDTotal-BJLG201003003.htm [2] 吴广, 冯顺山, 董永香, 等.不同硬度弹丸对中厚靶板作用的试验研究[J].兵工学报, 2010, 31(增刊1):260-263. http://d.old.wanfangdata.com.cn/Conference/7151862WU G, FENG S S, DONG Y X, et al.Experimental study on penetration effects of projectiles with different hardnesses on target[J].Acta Armamentarii, 2010, 31(Suppl 1):260-263. http://d.old.wanfangdata.com.cn/Conference/7151862 [3] 周义清, 张治民.30CrMnSiNi2A钢在不同应变率下的力学性能研究[J].兵器材料科学与工程, 2010, 33(4):46-50. doi: 10.3969/j.issn.1004-244X.2010.04.013ZHOU Y Q, ZHANG Z M.Mechanical property of 30CrMnSiNi2A steel under various strain rates[J].Ordnance Material Science and Engineering, 2010, 33(4):46-50. doi: 10.3969/j.issn.1004-244X.2010.04.013 [4] WEERASOORIYA T, MOY P.Effect of strain-rate on the deformation behavior of rolled-homogeneous armor (RHA) steel at different hardnesses[C]//Proceedings of the 2004 SEM International Congress and Exposition on Experimental Mechanics.Costa Mesa, 2004. [5] WIERZBICKI T, BAO Y, LEE Y W, et al.Calibration and evaluation of seven fracture models[J].Int J Mech Sci, 2005, 47(4/5):719-743. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=126fe80bf84920c01d800b02c18720a4 [6] TENG X, WIERZBICKI T.Evaluation of six fracture models in high velocity perforation[J].Eng Fract Mech, 2006, 73(12):1653-1678. doi: 10.1016/j.engfracmech.2006.01.009 [7] 李红英.金属拉伸试样的断口分析[J].山西大同大学学报(自然科学版), 2011, 27(1):76-79. doi: 10.3969/j.issn.1674-0874.2011.01.027LI H Y.Fracture analysis of the metal tensile specimen[J].Journal of Shanxi Datong University (Natural Science Edition), 2011, 27(1):76-79. doi: 10.3969/j.issn.1674-0874.2011.01.027 [8] BRIDGMAN P W.Studies in large plastic flow and fracture[M].New York:McGraw-Hill Book Company, 1952. [9] PERZYNA P.Fundamental problems in viscoplasticity[J].Adv Appl Mech, 1966, 9:243-377. doi: 10.1016/S0065-2156(08)70009-7 [10] JOHNSON G R, COOK W H.A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]//Proceedings of the 7th International Symposium on Ballistics, 1983: 541-547. [11] JOHNSON G R, COOK W H.Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J].Eng Fract Mech, 1985, 21(1):31-48. http://www.sciencedirect.com/science/article/pii/0013794485900529 [12] RICE J R, TRACEY D M.On the ductile enlargement of voids in triaxial stress fields[J].J Mech Phys Solids, 1969, 17(3):201-217. doi: 10.1016/0022-5096(69)90033-7