High Pressure Raman Investigation of Td-WTe2 Bulk Single Crystal
-
摘要: 采用入射方向平行于晶体c轴的532 nm激光作为激发光源,测量了Td-WTe2单晶体材料在0~17.0 GPa压力下的拉曼光谱,并结合第一性原理计算,对常温常压下Td-WTe2单晶体材料的拉曼振动模式进行了分析。实验结果表明:随着压力的增加,层间振动模式对应的拉曼峰峰位随压力移动的速度比层内振动模式快,即压力对层间振动模式的影响强于层内振动模式;位于79.0 cm-1的拉曼峰归属为层间振动模式,与其他层间振动模式不同,其受压力的影响是所有振动模式中最弱的。最后,分析并讨论了压力对Td-WTe2单晶体材料的层间和层内振动模式的影响。
-
关键词:
- 拉曼光谱 /
- 高压 /
- Td-WTe2单晶体材料 /
- 振动模式
Abstract: Raman spectra of Td-WTe2 bulk single crystal sample with the incident laser (532 nm) beam direction parallel to the c axis were obtained under pressures up to 17 GPa.Based on the first-principles calculations, we analyzed the Raman spectrum of Td-WTe2 bulk single crystal obtained at ambient temperature.The results indicated that the effect of pressure on the out-of-plane vibrational modes is much stronger than the in-plane vibrational modes, except for the 79.0 cm-1 vibrational mode which is assigned to the out-of-plane vibrational mode.The vibrational mode located at 79.0 cm-1 is less sensitive to pressure than the other vibrational modes.Moreover, we gave a detailed analysis and explanation for the effect of pressure on the vibration modes of Td-WTe2 bulk single crystal.-
Key words:
- Raman spectroscopy /
- high pressure /
- Td-WTe2 bulk single crystal /
- vibrational mode
-
表 1 常温常压下Td-WTe2单晶体材料拉曼活性声子模的理论计算结果和实验结果对比
Table 1. Comparison of the calculated and experimental Raman active phonon modes of Td-WTe2 bulk single crystal sample at ambient temperature and pressure
No. Symmetry Raman shift/(cm-1) Activity Calc. Expt. 1 A1 8.00 Raman, IR 2 B2 21.22 Raman, IR 3 A1 24.91 Raman, IR 4 A1 75.57 79.0 Raman, IR 5 B2 83.90 Raman, IR 6 B1 84.86 Raman, IR 7 A2 85.59 88.4 Raman 8 A2 108.58 109.7 Raman 9 B1 108.67 Raman, IR 10 A2 111.18 113.9 Raman 11 B1 112.11 Raman, IR 12 A2 112.51 Raman 13 B2 116.54 Raman, IR 14 B2 122.09 Raman, IR 15 B2 126.73 Raman, IR 16 A1 127.57 130.8 Raman, IR 17 A1 128.65 Raman, IR 18 B2 130.78 Raman, IR 19 A1 131.51 Raman, IR 20 A2 152.05 Raman 21 B1 152.61 Raman, IR 22 B2 156.24 Raman, IR 23 A1 158.21 160.8 Raman, IR 24 A2 158.65 Raman 25 B1 158.91 Raman, IR 26 B2 167.91 Raman, IR 27 A1 169.30 Raman, IR 28 B2 205.09 Raman, IR 29 A1 205.12 207.5 Raman, IR 30 B2 209.85 Raman, IR 31 A1 211.07 Raman, IR 32 B2 232.16 Raman, IR 33 A1 232.24 Raman, IR Note:IR means infrared activity. 表 2 Td-WTe2单晶体材料的拉曼峰峰位随着压力变化的线性拟合参数
Table 2. Fitting parameters for the Raman peak positions of Td-WTe2 bulk single crystal at different pressures
Raman shift/(cm-1) Fitted slope Correlation coefficient 79.0 0.32 0.86 88.4 1.13 0.94 109.7 1.09 0.97 130.8 1.50 0.98 160.8 2.33 0.99 207.5 1.68 0.99 -
[1] YIN Z, LI H, LI H, et al.Single-layer MoS2 phototransistors[J].ACS Nano, 2012, 6(1):74-80. doi: 10.1021/nn2024557 [2] PEREA-LÓPEZ N, ELÍAS A L, BERKDEMIR A, et al.Photosensor device based on few-layered WS2 films[J].Adv Funct Mater, 2013, 23(44):5511-5517. doi: 10.1002/adfm.v23.44 [3] LU Y, GOLDSMITH B R, KYBERT N J, et al.DNA-decorated graphene chemical sensors[J].Appl Phys Lett, 2010, 97(8):083107. doi: 10.1063/1.3483128 [4] WANG L, WANG Y, WONG J I, et al.Functionalized MoS2 nanosheet-based field-effect biosensor for label-free sensitive detection of cancer marker proteins in solution[J].Small, 2014, 10(6):1101-1105. doi: 10.1002/smll.201302081 [5] PUMERA M, LOO A H.Layered transition-metal dichalcogenides (MoS2 and WS2) for sensing and biosensing[J].TrAC Trends Anal Chem, 2014, 61:49-53. doi: 10.1016/j.trac.2014.05.009 [6] GONG C, ZHANG H, WANG W, et al.Band alignment of two-dimensional transition metal dichalcogenides:application in tunnel field effect transistors[J].Appl Phys Lett, 2013, 103(5):053513. doi: 10.1063/1.4817409 [7] RADISAVLJEVIC B, RADENOVIC A, BRIVIO J, et al.Single-layer MoS2 transistors[J].Nat Nanotechnol, 2011, 6(3):147-150. doi: 10.1038/nnano.2010.279 [8] KANG J, TONGAY S, ZHOU J, et al.Band offsets and heterostructures of two-dimensional semiconductors[J].Appl Phys Lett, 2013, 102(1):012111. doi: 10.1063/1.4774090 [9] LEE J, WANG Z H, HE K L, et al.High frequency MoS2 nanomechanical resonators[J].ACS Nano, 2013, 7(7):6086-6091. doi: 10.1021/nn4018872 [10] ALI M N, XIONG J, FLYNN S, et al.Large, non-saturating magnetoresistance in WTe2[J].Nature, 2014, 514(7521):205-208. doi: 10.1038/nature13763 [11] KANG D, ZHOU Y, YI W, et al.Superconductivity emerging from a suppressed large magnetoresistant state in tungsten ditelluride[J].Nat Commun, 2015, 6:7804. doi: 10.1038/ncomms8804 [12] LIU T, XU S, SUN C, et al.Raman spectroscopic studies on p-terphenyl under high pressure[J].Chem Phys Lett, 2014, 615:1-5. doi: 10.1016/j.cplett.2014.09.057 [13] 周密, 李占龙, 陆国会, 等.高压拉曼光谱方法研究联苯分子费米共振[J].物理学报, 2011, 60(5):050702. http://d.old.wanfangdata.com.cn/Periodical/wlxb201105023ZHOU M, LI Z L, LU G H, et al.High pressure Raman investigation on the Fermi resonance of biphenyl[J].Acta Physica Sinica, 2011, 60(5):050702. http://d.old.wanfangdata.com.cn/Periodical/wlxb201105023 [14] 刘天元, 孙成林, 里佐威, 等.Raman光谱方法研究三氯甲烷与苯分子间的C/H…π相互作用[J].物理学报, 2012, 61(10):107801. doi: 10.7498/aps.61.107801LIU T Y, SUN C L, LI Z W, et al.Raman spectroscopy study on the C/H…π interaction between benzene and chloroform[J].Acta Physica Sinica, 2012, 61(10):107801. doi: 10.7498/aps.61.107801 [15] GONCHAROV A F.Raman spectroscopy at high pressures[J].Int J Spectrosc, 2012:617528. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201407004 [16] TISSEN V G, OSORIO M R, BRISON J P, et al.Pressure dependence of superconducting critical temperature and upper critical field of 2H-NbS2[J].Phys Rev B, 2013, 87(13):134502. doi: 10.1103/PhysRevB.87.134502 [17] SUDEROW H, TISSEN V G, BRISON J P, et al.Pressure induced effects on the Fermi surface of superconducting 2H-NbSe2[J].Phys Rev Lett, 2005, 95(11):117006. doi: 10.1103/PhysRevLett.95.117006 [18] PERDEW J P, CHEVARY J A, VOSKO S H, et al.Atoms, molecules, solids, and surfaces:applications of the generalized gradient approximation for exchange and correlation[J].Phys Rev B, 1992, 46(11):6671-6687. doi: 10.1103/PhysRevB.46.6671 [19] KRESSE G, FURTHMÜLLER J.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J].Phys Rev B, 1996, 54(16):11169-11186. doi: 10.1103/PhysRevB.54.11169 [20] CLARK S J, SEGALL M D, PICKARD C J, et al.First principles methods using CASTEP[J].Zeitschrift für Kristallographie-Crystalline Materials, 2005, 220(5/6):567-570. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ027843518/ [21] KONG W D, WU S F, RICHARD P, et al.Raman scattering investigation of large positive magnetoresistance material WTe2[J].Appl Phys Lett, 2015, 106(8):081906. doi: 10.1063/1.4913680 [22] LEE C H, SILVA E C, CALDERIN L, et al.Tungsten ditelluride:a layered semimetal[J].Sci Rep, 2015, 5:10013. doi: 10.1038/srep10013 [23] MANOJ K J, ANJALI S, DATTATRAY J L, et al.A combined experimental and theoretical study of the structural, electronic and vibrational properties of bulk and few-layer Td-WTe2[J].J Phys Condens Matter, 2015, 27(28):285401. doi: 10.1088/0953-8984/27/28/285401