铜/金刚石复合材料电磁轨道烧蚀特性的实验研究

曹海要 战再吉

曹海要, 战再吉. 铜/金刚石复合材料电磁轨道烧蚀特性的实验研究[J]. 高压物理学报, 2016, 30(4): 317-322. doi: 10.11858/gywlxb.2016.04.008
引用本文: 曹海要, 战再吉. 铜/金刚石复合材料电磁轨道烧蚀特性的实验研究[J]. 高压物理学报, 2016, 30(4): 317-322. doi: 10.11858/gywlxb.2016.04.008
CAO Hai-Yao, ZHAN Zai-Ji. Experimental Study of Cu/Diamond Composite Electromagnetic Rail Ablation Characteristics[J]. Chinese Journal of High Pressure Physics, 2016, 30(4): 317-322. doi: 10.11858/gywlxb.2016.04.008
Citation: CAO Hai-Yao, ZHAN Zai-Ji. Experimental Study of Cu/Diamond Composite Electromagnetic Rail Ablation Characteristics[J]. Chinese Journal of High Pressure Physics, 2016, 30(4): 317-322. doi: 10.11858/gywlxb.2016.04.008

铜/金刚石复合材料电磁轨道烧蚀特性的实验研究

doi: 10.11858/gywlxb.2016.04.008
基金项目: 

国家重点基础研究发展计划(973计划)资助项目 2010CB731600

详细信息
    作者简介:

    曹海要(1986-), 男, 硕士, 助理实验师, 主要从事电磁发射技术研究.E-mail:haiyaocao@ysu.edu.cn

    通讯作者:

    战再吉(1968-), 男, 博士, 教授, 主要从事电磁发射技术研究.E-mail:zjzhan@ysu.edu.cn

  • 中图分类号: O442;TG146.1

Experimental Study of Cu/Diamond Composite Electromagnetic Rail Ablation Characteristics

  • 摘要: 通过对电磁轨道发射初期阶段,铜/金刚石复合材料轨道在预紧力0.4~2.0kN、电流100~300kA下的滑动电烧蚀实验分析发现:由于受到焦耳热及电弧热的双重作用,铜/金刚石复合材料的质量损失、烧蚀深度随电流的增大而呈现增加趋势,随预紧力的增加而呈下降趋势;在主烧蚀区域形成凹凸不平的形貌,由于部分金刚石的脱落形成一定数量的微孔,在强交变温度场作用下产生了热应力裂纹;在烧蚀区域的边缘,主要由于熔融液态金属受强电磁场涡流的作用而形成微凸及飞溅形貌;在滑动电接触区域则表现为电枢微凸体与轨道之间摩擦形成的划痕,其磨损机制为磨粒磨损;在铜/金刚石复合材料主烧蚀区的横截面,由于轨道材料的长高比过大而造成散热速率的不同,形成不同尺度的晶粒组织,表面硬度下降较大。

     

  • 图  HCED-Ⅱ型电烧蚀装置的结构示意图

    Figure  1.  Structure schematic of HCED-Ⅱelectric ablation device

    图  铜/金刚石复合材料电烧蚀后的宏观形貌及轮廓图

    Figure  2.  Macro-morphology and profile of Cu/diamond composite after electrical ablation

    图  铜/金刚石复合材料烧蚀后的质量损失随实验电流及预紧力的变化

    Figure  3.  Mass loss of Cu/diamond composite after electrical ablation versus current with different preloads

    图  铜/金刚石复合材料的烧蚀深度

    Figure  4.  The ablation depth of Cu/diamond composite

    图  铜/金刚石复合材料的微气孔和微裂纹形貌

    Figure  5.  Micro-pores and micro-cracks of Cu/diamond composite

    图  铜/金刚石复合材料的微凸及飞溅形貌

    Figure  6.  Micro-bulges and splash of Cu/diamond composite

    图  铜/金刚石复合材料的划痕形貌

    Figure  7.  Micro-scratches of Cu/diamond composite

    图  铜/金刚石复合材料横截面金相及硬度

    Figure  8.  Metallography and hardness of Cu/diamond composite

    表  1  电烧蚀实验参数

    Table  1.   Experimental parametersof electrical ablation

    Current/(kA) Preload/(kN)
    100 0.4
    150 0.8
    200 1.2
    250 1.6
    300 2.0
    下载: 导出CSV
  • [1] 巩飞, 翁春生.电磁轨道炮滑动电接触的热效应[J].高压物理学报, 2014, 28(1):91-96. http://www.gywlxb.cn/CN/abstract/abstract1676.shtml

    GONG F, WENG C S.Thermal effect sliding electrical contact in electromagnetic railgun[J].Chinese Journal of High Pressure Physics, 2014, 28(1):91-96. http://www.gywlxb.cn/CN/abstract/abstract1676.shtml
    [2] BANSAL D G, STREATOR J L.Behabior of copper-aluminum tribological pair under high current densities[J].IEEE Trans Magn, 2009, 45(1):244-249. doi: 10.1109/TMAG.2008.2008684
    [3] YOVANOVICH M M.Four decades of research on thermal contact, gap, and joint resistance in microelectronics[J].IEEE Trans Compon Packag Technol, 2005, 28(2):182-206. doi: 10.1109/TCAPT.2005.848483
    [4] 程诚, 关永超, 何勇, 等.磁探针方法测串联增强型固体电枢电磁轨道炮内弹道速度[J].高压物理学报, 2013, 27(6):901-907. http://www.gywlxb.cn/CN/abstract/abstract1655.shtml

    CHENG C, GUAN Y C, HE Y, et al.Measurement of solid armature's in-bore velocity using b-dot orobes in series enhanced railgun[J].Chinese Journal of High Pressure Physics, 2013, 27(6):901-907. http://www.gywlxb.cn/CN/abstract/abstract1655.shtml
    [5] 郭凤仪, 陈忠华.电接触理论及其应用技术[M].北京:中国电力出版社, 2008:49-52.

    GUO F Y, CHEN Z H.Electrical contact theory and its application technology[M].Beijing:China Electric Power Press, 2008:49-52.
    [6] 邵文柱.Cp/CuCd电接触材料在电弧作用下的失效行为[J].电工合金, 2000(4):8-22. http://www.cnki.com.cn/Article/CJFDTotal-JGHJ200004002.htm

    SHAO W Z.Failure behavior of Cp/CuCd electrical contact materials under arc[J].Electrician Alloy, 2000(4):8-22. http://www.cnki.com.cn/Article/CJFDTotal-JGHJ200004002.htm
    [7] MEGER R A, COOPER K P, JONES H N, et al.Analysis of rail surfaces from a multi-shot railgun[J].IEEE Trans Magn, 2005, 41(1):211-213. doi: 10.1109/TMAG.2004.838923
    [8] GEE R M AND PERSAD C.The response of different copper alloys as rail contacts at the breech of an electromagnetic launcher[J].IEEE Trans Magn, 2001, 37(1):263-268. doi: 10.1109/20.911834
    [9] PERSAD C AND CASTRO Z.Railgun tribology:characterization and control of multishot wear debris[J].IEEE Trans Plasma Sci, 2007, 43(1):173-177. http://ieeexplore.ieee.org/document/4033098/
    [10] HSIEH K T.Numerical study on groove formation of rails for various materials[J].IEEE Trans Magn, 2005, 41(1):380-382. doi: 10.1109/TMAG.2004.839287
    [11] WATT T, STEFANI F, CRAWFORD M, et al.Investigation of damage to solid-armature railguns at startup[J].IEEE Trans Magn, 2007, 43(1):214-218. doi: 10.1109/TMAG.2006.887432
    [12] 韩锦珠.铜合金离子注入层的组织结构及摩擦特性[D].秦皇岛: 燕山大学, 2011: 9-14. http://cdmd.cnki.com.cn/Article/CDMD-10216-2010089403.htm

    HAN J Z.Structure and tribological properties of ion implantation layer of copper alloys[D].Qinhuangdao: Yanshan University, 2011: 9-14. http://cdmd.cnki.com.cn/Article/CDMD-10216-2010089403.htm
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  7035
  • HTML全文浏览量:  2768
  • PDF下载量:  169
出版历程
  • 收稿日期:  2016-01-11
  • 修回日期:  2016-03-12

目录

    /

    返回文章
    返回