First-Principles Study of Spin State, Structure and Seismic Velocity of Ferrous-Bearing Post-Perovskite MgSiO3
-
摘要: 运用基于密度泛函的第一性原理方法,对含Fe2+后钙钛矿相MgSiO3在高压下的性质进行了计算。计算结果表明, 在0~160 GPa的压强范围内Fe2+始终保持高自旋状态,但在高压下有转向中间自旋或低自旋的趋势。对于含有多个Fe2+的结构,通过比较可能结构的能量以及结合力学稳定性判据,发现Fe2+倾向于以最紧密方式替位占据Mg2+的位置。还计算了120 GPa(D〃层压强)下的弹性波速,表明无论压缩波(P波)还是剪切波(S波),随着Fe2+浓度的增加,地震波速明显减小,并且S波的横向各向异性明显增强。Abstract: By using the first principles method based on density functional theory, the physical properties of ferrous-bearing post-perovskite MgSiO3 at high pressure were calculated.The results show that the high-spin state is conserved for ferrous irons from 0 to 160 GPa.The transition tendency from high-spin state to intermediate-spin or low-spin state at higher pressure was also presented.For those structures containing several Fe2+, from the comparison of total enthalpies and the mechanical stability criterion we can conclude that the ferrous irons tend to take the closest positions of Mg2+.Moreover, the seismic velocities at 120 GPa (pressure in D〃 layer) were calculated.The calculations show that both the compressional waves (P-waves) and the shear waves (S-waves) decrease obviously with the increasing concentration of Fe2+.Remarkably, the transverse anisotropy of shear wave increases significantly.
-
Key words:
- post-perovskite /
- MgSiO3 /
- D〃 layer /
- spin /
- seismic velocity
-
图 4 Fe2+不同浓度时的不同结构(只给出了Fe和Mg元素(绿色为Mg原子、紫色为Fe原子),(a)、(h)、(m)、(n)分别为浓度为37.5%、50.0%、67.5%、75.0%时的最稳定结构)
Figure 4. Different structures of various concentration of Fe2+(only the Fe and Mg atoms presented, and the green and purple balls denote Mg and Fe, respectively), where (a), (h), (m), (n) are the most stable structure for the concentration of 37.5%, 50.0%, 67.5%, 75.0%, respectively
表 1 Fe2+的不同自旋排列以及对应自旋态
Table 1. Various spin arrangement and corresponding spin states of Fe2+
Spin states Fe2+(3d6) HS(S=2) ↑↓ ↑ ↑ ↑ ↑ IS(S=1) ↑↓ ↑↓ ↑ ↑ LS(S=0) ↑↓ ↑↓ ↑↓ Note:↑ represents spin up, ↓ represents spin down. 表 2 120 GPa时含不同Fe2+浓度的pPv的弹性常数
Table 2. Elastic constants of pPv at 120 GPa with different concentrations of Fe2+
(GPa) Concentration C11 C22 C33 C12 C13 C23 C44 C55 C66 0 1 200 941 1 158 375 274 450 277 248 377 0.125 1 215 881 1 172 403 318 460 260 248 388 1 1 089 815 1 049 414 377 457 64 202 259 -
[1] Oganov A R, Ono S. Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth's D ″layer[J]. Nature, 2004, 430(6998): 445-448. doi: 10.1038/nature02701 [2] Murakami M, Hirose K, Kawamura K, et al. Post-perovskite phase transition in MgSiO3[J]. Science, 2004, 304(5672): 855-858. doi: 10.1126/science.1095932 [3] Stackhouse S, Brodholt J P, Price G D. Elastic anisotropy of FeSiO3 end-members of the perovskite and post-perovskite phases[J]. Geophys Res Lett, 2006, 33(1): L01304. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=df3513c8f5b503df9c5e418175f64752 [4] Iitaka T, Hirose K, Kawamura K, et al. The elasticity of the MgSiO3 post-perovskite phase in the Earth's lowermost mantle[J]. Nature, 2004, 430(6998): 442-445. doi: 10.1038/nature02702 [5] Hsu H, Blaha P, Cococcioni M, et al. Spin-state crossover and hyperfine interactions of ferric iron in MgSiO3 perovskite[J]. Phys Rev Lett, 2011, 106(11): 118501. doi: 10.1103/PhysRevLett.106.118501 [6] Catalli K, Shim S H, Prakapenka V B, et al. Spin state of ferric iron in MgSiO3 perovskite and its effect on elastic properties[J]. Earth Planet Sc Lett, 2010, 289(1): 68-75. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=31bf65eb3977df18dc00db3bdd2d990e [7] Hsu H, Yu Y G, Wentzcovitch R M. Spin crossover of iron in aluminous MgSiO3 perovskite and post-perovskite[J]. Earth Planet Sc Lett, 2012, 359/360: 34-39. doi: 10.1016/j.epsl.2012.09.029 [8] Jackson J M, Sturhahn W, Tschauner O, et al. Behavior of iron in(Mg, Fe)SiO3 post-perovskite assemblages at Mbar pressures[J]. Geophys Res Lett, 2009, 36(10): L10301. doi: 10.1029/2009GL037815 [9] Yamanaka T, Mao, W L, Mao H K, et al. New structure and spin state of iron-rich(Mg, Fe)SiO3 post-perovskite[J]. J Phys: Conf Ser, 2010, 215(1): 012100. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000001623073 [10] Caracas R, Cohen R E. Ferrous iron in post-perovskite from first-principles calculations[J]. Phys Earth Planet In, 2008, 168(3): 147-152. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e7a8567f9d4837986fdceabd1eb0167b [11] Lin J F, Watson H, Vankó G, et al. Intermediate-spin ferrous iron in lowermost mantle post-perovskite and perovskite[J]. Nat Geosci, 2008, 1(10): 688-691. doi: 10.1038/ngeo310 [12] Stackhouse S, Stixrude L, Karki B B. Thermal conductivity of periclase(MgO)from first principles[J]. Phys Rev Lett, 2010, 104(20): 208501. doi: 10.1103/PhysRevLett.104.208501 [13] Suchiya J, Tsuchiya T, Wentzcovitch R M. Vibrational and thermodynamic properties of MgSiO3 post-perovskite[J]. J Geophys Res: Solid Earth, 2005, 110(B2): B02204. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5d41c738bcfc2ccee269077f146fb8fc [14] Stackhouse S, Brodholt J P, Dobson D P, et al. Electronic spin transitions and the seismic properties of ferrous iron-bearing MgSiO3 post-perovskite[J]. Geophys Res Lett, 2006, 33(12): L12S03. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3a56d8246d2ab6b3c7ee72174a963a1e [15] Auzende A L, Badro J, Ryerson F J, et al. Element partitioning between magnesium silicate perovskite and ferropericlase: New insights into bulk lower-mantle geochemistry[J]. Earth Planet Sc Lett, 2008, 269(1): 164-174. http://www.sciencedirect.com/science/article/pii/S0012821X08000964 [16] Caracas R, Cohen R E. Effect of chemistry on the stability and elasticity of the perovskite and post-perovskite phases in the MgSiO3-FeSiO3-Al2O3 system and implications for the lowermost mantle[J]. Geophys Res Lett, 2005, 32(16): L16310. doi: 10.1029/2005GL023164 [17] Hohenberg P, Kohn W. Inhomogeneous electron gas[J]. Phys Rev, 1964, 136(3B): B864. doi: 10.1103/PhysRev.136.B864 [18] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18): 3865-3868. doi: 10.1103/PhysRevLett.77.3865 [19] Karki B B, Stixrude L, Wentzcovitch R M. High-pressure elastic properties of major materials of Earth's mantle from first principles[J]. Rev Geophys, 2001, 39(4): 507-534. doi: 10.1029/2000RG000088 [20] Hsu H, Umemoto K, Blaha P, et al. Spin states and hyperfine interactions of iron in(Mg, Fe)SiO3 perovskite under pressure[J]. Earth Planet Sc Lett, 2010, 294(1): 19-26. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6683b03c71dd158d7c1650e029bab551 [21] Tsuchiya T, Tsuchiya J, Umemoto K, et al. Elasticity of post-perovskite MgSiO3[J]. Geophys Res Lett, 2004, 31(14): L14603. doi: 10.1029/2004GL020278 [22] 倪四道.超低速区研究进展与展望[J].中国科学技术大学学报, 2007, 37(8): 820-829. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkxjsdxxb200708003Ni S D. Review on studies of ultra low velocity zone[J]. Journal of University of Science and Technology of China, 2007, 37(8): 820-829. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkxjsdxxb200708003 [23] Musgrave M J P. Crystal Acoustics: Introduction to the Study of Elastic Waves and Vibrations in Crystals[M]. San Francisco, CA: Holden-Day, 1970.