Reactive Sintering of B6O/TiB2 Composites at High Temperature and High Pressure
-
摘要: 以B和TiO2为初始原料,依据压力可抑制原子长程扩散的动力学效应,通过高温高压(4~5 GPa,1 200~1 500 ℃)一步反应烧结法制备B6O/TiB2复合材料。当B和TiO2物质的量之比为14.0:0.8时,在5 GPa、1 200 ℃、保温30 min条件下得到的烧结样品性能较好,非晶硼(纯度93%~94%)过量混合粉末样品的硬度最高约为29 GPa,高纯晶体硼(纯度99.99%)过量混合粉末样品的硬度最高约为32 GPa,相对密度可高达99%。实验结果表明:高压抑制晶粒过度长大,同时又有利于B6O的合成,使其合成温度比常压下有所降低;在高压反应烧结过程中,合成的第二相TiB2晶粒和样品中的非晶相有效地消耗了残余应力,起到了增韧作用。Abstract: B6O/TiB2 composites were produced from B-TiO2 mixtures using "one step reactive sintering method" at high pressures between 4 and 5 GPa.The highest Vicker's hardness is 29 GPa for samples consisting of amorphous B and TiO2 (molar ratio:14.0:0.8).For samples consisting of crystal B and TiO2 (molar ratio:14.0:0.8) sintered at the condition of 5 GPa and 1 200 ℃ for 30 min, the highest Vicker's hardness is 32 GPa, and the ratio of densification is up to 99%.High pressure restrains the formation of large crystalline grains and promotes the synthesis of B6O, and reduces the sintering temperature comparing to that at atmospheric pressure.On the other hand, generated additional TiB2 and superfluous boron can improve the fracture toughness of the sintered samples.
-
Key words:
- superhard material /
- high pressure sintering /
- hardness /
- relative density /
- toughening mechanism
-
图 3 过量晶体硼块体烧结(5 GPa,1 200 ℃,60 min)样品的SEM图(深灰色:TiB2晶粒,亮灰色:B6O晶粒)
Figure 3. SEM image showing distributed TiB2 grains (dark grey) and B6O grains (bright grey) of a reactive sintered mixture consisting of crystalline B and TiO2 (molar ratio: 14.0:0.8) by high-pressure high-temperature (5 GPa, 1 200 ℃, 60 min) sintering
图 5 过量晶体硼块体烧结(5 GPa,1 200 ℃,60 min)样品抛光面裂纹偏转和弯曲的SEM图
Figure 5. SEM micrographs of the polished surfaces with deflecting and curving crack around TiB2 grains of a reactive sintered mixture consisting of crystalline B and TiO2 (molar ratio:14.0:0.8) under high-pressure high-temperature condition (5 GPa, 1 200 ℃, 60 min)
表 1 B6O/TiB2样品在不同条件下测量的密度和相对密度
Table 1. Measured density and relative density of B6O/TiB2 samples at different experiment conditions
Initial reactive
materialsMolar
ratioSintering conditions ρactual/
(g/cm3)κ/
(%)Pressure/(GPa) Temperature/(℃) Dwelling time/(min) Ba+TiO2 14.0:1.0 4.0 1 200 30 2.62 90.2 Ba+TiO2 14.0:1.0 4.5 1 200 30 2.67 91.9 Ba+TiO2 14.0:1.0 5.0 1 200 30 2.76 95.0 Ba+TiO2 14.0:0.8 5.0 1 200 30 2.68 95.3 Bc+TiO2 14.0:0.8 5.0 1 200 30 2.80 99.4 Note:Superscript ‘a’ means amorphous while ‘c’ means crystalline. -
[1] Petrak D R, Ruh R, Atkins G R. Mechanical properties of hot-pressed boron suboxide and boron[J]. Am Ceram Soc Bull, 1974, 53: 569-573. http://ci.nii.ac.jp/naid/80012972638 [2] He D W, Shieh S R, Duffy T S. Strength and equation of state of boron suboxide from radial X-ray diffraction in a diamond cell under nonhydrostatic compression[J]. Phys Rev B, 2004, 70(18): 184121. doi: 10.1103/PhysRevB.70.184121 [3] He D W, Akaishi M, Scott B L, et al. Growth of boron suboxide crystals in the B-B2O3 system at high pressure and high temperature[J]. J Mater Res, 2002, 17(2): 284-290. doi: 10.1557/JMR.2002.0041 [4] Hubert H, Devouard B, Garvie L A J, et al. Icosahedral packing of B12 icosahedra in boron suboxide(B6O)[J]. Nature, 1998, 391(6665): 376-378. doi: 10.1038/34885 [5] He D W, Zhao Y S, Daemen L, et al. Boron suboxide: As hard as cubic boron nitride[J]. Appl Phys Lett, 2002, 81(4): 643-645. doi: 10.1063/1.1494860 [6] Rizzo H F, Simmons W C, Bielstein H O. The existence and formation of the solid B6O[J]. J Electrochem Soc, 1962, 109(11): 1079-1082. doi: 10.1149/1.2425241 [7] Lee S, Kim S W, Bylander D M, et al. Crystal structure, formation enthalpy, and energy bands of B6O[J]. Phys Rev B, 1991, 44(8): 3550. doi: 10.1103/PhysRevB.44.3550 [8] Badzian A R. Superhard material comparable in hardness to diamond[J]. Appl Phys Lett, 1988, 53(25): 2495-2497. doi: 10.1063/1.100528 [9] Kobayashi M, Higashi I, Brodhag C, et al. Structure of B6O boron-suboxide by Rietveld refinement[J]. J Mater Sci, 1993, 28(8): 2129-2134. doi: 10.1007/BF00367573 [10] Andreev Y G. Superhard boron-rich borides and studies of the BCN system[J]. Mater Sci Eng A, 1996, 209(1): 16-22. http://www.sciencedirect.com/science/article/pii/0921509395100954 [11] Liu X Y, Zhao X D, Hou W M, et al. A new route for the synthesis of boron suboxide B7O[J]. J Alloy Compd, 1995, 223(1): L7-L9. doi: 10.1016/0925-8388(95)01558-2 [12] Olofsson M, Lundström T. Synthesis and structure of non-stoichiometric B6O[J]. J Alloy Compd, 1997, 257(1): 91-95. http://www.sciencedirect.com/science/article/pii/S092583889700008X [13] Hubert H, Garvie L A J, Devouard B, et al. High-pressure, high-temperature synthesis and characterization of boron suboxide(B6O)[J]. Chem Mater, 1998, 10(6): 1530-1537. doi: 10.1021/cm970433+ [14] Yu S W, Wang G H, Yin S Y, et al. Nanostructured films of Boron suboxide by pulsed laser deposition[J]. Phys Lett A, 2000, 268(4): 442-447. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1675d64bb4fd1ec150de42e33a9d74c6 [15] Shabalala T C, McLachlan D S, Sigalas I, et al. Hard and tough boron suboxide based composites[J]. Ceram Int, 2008, 34(7): 1713-1717. doi: 10.1016/j.ceramint.2007.05.010 [16] Holcombe C E Jr, Horne O J Jr. Method for preparing boron suboxide: US, 3660031[P]. 1972. [17] Johnson O T, Sigalas I, Herrmann M. Comparative study of reactive and non-reactive sintering route for producing B6O-TiB2 materials[J]. Ceram Int, 2014, 40(1): 573-579. doi: 10.1016/j.ceramint.2013.05.140 [18] Grabis J, Rašmane Dz, Krūmia A, et al. Preparation of boron suboxide nanoparticles and their processing[C]//Proceedings of the IOP Conference Series: Materials Science and Engineering. Bristol: IOP Publishing, 2011. [19] Sasai R, Fukatsu H, Kojima T, et al. High pressure consolidation of B6O-diamond mixtures[J]. J Mater Sci, 2001, 36(22): 5339-5343. doi: 10.1023/A:1012499214307 [20] Itoh H, Yamamoto R, Iwahara H. B6O-cBN composites prepared by high-pressure sintering[J]. J Am Ceram Soc, 2000, 83(3): 501-506. doi: 10.1111/j.1151-2916.2000.tb01224.x/full [21] Itoh H, Maekawa I, Iwahara H. Microstructure and mechanical properties of B6O-B4C sintered composites prepared under high pressure[J]. J Mater Sci, 2000, 35(3): 693-698. doi: 10.1023/A:1004753116816 [22] Thiele M, Herrmann M, Michaelis A. B6O materials with Al2O3/Y2O3 additives densified by FAST/SPS and HIP[J]. J Eur Ceram Soc, 2013, 33(13/14): 2375-2390. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=20fa5a4de61b6f10593af1fd83e227c9 [23] Chen C, He D W, Kou Z L, et al. B6O-based composite to rival polycrystalline cubic boron bitride[J]. Adv Mater, 2007, 19(23): 4288-4291. doi: 10.1002/adma.200700836 [24] Thiele M, Herrmann M, Räthel J, et al. Preparation and properties of B6O/TiB2-composites[J]. J Eur Ceram Soc, 2012, 32(8): 1821-1835. doi: 10.1016/j.jeurceramsoc.2011.12.034 [25] Qian J, Zerda T W, He D W, et al. Micron diamond composites with nanocrystalline silicon carbide bonding[J]. J Mater Res, 2003, 18(5): 1173-1178. doi: 10.1557/JMR.2003.0161 [26] Xu C, He D W, Wang H K, et al. Synthesis of novel superhard materials under ultrahigh pressure[J]. Chinese Sci Bull, 2014: 1-7. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=JXTW201436014 [27] He D W, Zhao Q, Wang W H, et al. Pressure-induced crystallization in a bulk amorphous Zr-based alloy[J]. J Non-Cryst Solids, 2002, 297(1): 84-90. doi: 10.1016/S0022-3093(01)00906-1 [28] Jiang Z P, Rhine W E. Preparation of titanium diboride from titanium alkoxides and boron powder[J]. Chem Mater, 1992, 4(3): 497-500. doi: 10.1021/cm00021a002 [29] 李良福.新型无钨硬质合金的研制状况[J].硬质合金, 1999, 16(2): 65-70. http://www.cnki.com.cn/Article/CJFDTotal-YZHJ199902000.htmLi L F. The study of new-style tungsten-free cemented carbide[J]. Cemented Carbide, 1999, 16(2): 65-70. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-YZHJ199902000.htm [30] Itoh H, Maekawa I, Iwahara H. High pressure sintering of B6O powder and properties of the sintered compact[J]. J Soc Mater Sci, 1998, 47(10): 1000-1005. doi: 10.2472/jsms.47.1000