[1] |
Morales M A, Pierleoni C, Ceperley M D. Equation of state of metallic hydrogen from coupled electron-ion Monte Carlo simulations[J]. Phys Rev E, 2010, 81(2): 021202. http://www.ncbi.nlm.nih.gov/pubmed/20365556
|
[2] |
Nellis W J, Weir S T, Mitchell A C. Minimum metallic conductivity of fluid hydrogen at 140 GPa(1.4 Mbar)[J]. Phys Rev B, 1998, 59(5): 3434-3449.
|
[3] |
da Silva L B, Celliers P M, Collins G W, et al. Absolute equation of state measurements on shocked liquid deuterium up to 200 GPa(2 Mbar)[J]. Phys Rev Lett, 1997, 78(3): 483-486. doi: 10.1103/PhysRevLett.78.483
|
[4] |
Collins G W, da Silva L B, Celliers P, et al. Measurements of the equation of state of deuterium at the fluid insulator-metal transition[J]. Science, 1998, 281(1): 1178-1181. http://www.ncbi.nlm.nih.gov/pubmed/9712579
|
[5] |
Collins G W, Celliers P M, da Silva L B, et al. Equation of state measurements of hydrogen isotopes on Nova[J]. Phys Plasmas, 1998, 5(5): 1864-1869. doi: 10.1063/1.872857
|
[6] |
Hicks D G, Boehly T R, Celliers P M, et al. Laser-driven single shock compression of fluid deuterium from 45 to 220 GPa[J]. Phys Rev B, 2009, 79(1): 014112. doi: 10.1103/PhysRevB.79.014112
|
[7] |
Knudson M D, Hanson D L, Bailey J E, et al. Equation of state measurements in liquid deuterium to 70 GPa[J]. Phys Rev Lett, 2001, 87(22): 225501. doi: 10.1103/PhysRevLett.87.225501
|
[8] |
Knudson M D, Hanson D L, Bailey J E, et al. Principal hugoniot, reverberating wave, and mechanical reshock measurements of liquid deuterium to 400 GPa using plate impact techniques[J]. Phys Rev B, 2004, 69(14): 144209. doi: 10.1103/PhysRevB.69.144209
|
[9] |
Belov S I, Boriskov G V, Bykov A I, et al. Shock compression of solid deuterium[J]. JETP Lett, 2002, 76(7): 433-435. doi: 10.1134/1.1528696
|
[10] |
Boriskov G V, Bykov A I, Ilkaev R I, et al. Shock compression of liquid deuterium up to 109 GPa[J]. Phys Rev B, 2005, 71(9): 092104. doi: 10.1103/PhysRevB.71.092104
|
[11] |
Grishechkin S K, Gruzdev S K, Gryaznov V K, et al. Experimental measurements of the compressibility, temperature, and light absorption in dense shock-compressed gaseous deuterium[J]. JETP Lett, 2004, 80(6): 398-404. doi: 10.1134/1.1830656
|
[12] |
Kerley G I. Equation of state and phase diagram of dense hydrogen[J]. Phys Earth Planet Inter, 1972, 6(1): 78-82. http://www.sciencedirect.com/science/article/pii/0031920172900362
|
[13] |
Ross M. Linear-mixing model for shock-compressed liquid deuterium[J]. Phys Rev B, 1997, 58(2): 669-677. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRBMDO000058000002000669000001&idtype=cvips&gifs=Yes
|
[14] |
Saumon D, Chabrier G. Fluid hydrogen at high density: Pressure ionization[J]. Phys Rev A, 1992, 46(4): 2084-2100. doi: 10.1103/PhysRevA.46.2084
|
[15] |
田春玲, 经福谦, 顾云军, 等.高温高密度氢(氘)的物态方程——离解效应研究[J].高压物理学报, 2007, 21(1): 8-14. http://d.wanfangdata.com.cn/Periodical/gywlxb200701002Tian C L, Jing F Q, Gu Y J, et al. Equation of state for fluid hydrogen and deuterium: Dissociation effects studies[J]. Chinese Journal of High Pressure Physics, 2007, 21(1): 8-14. (in Chinese) http://d.wanfangdata.com.cn/Periodical/gywlxb200701002
|
[16] |
Lenosky T J, Bickham S R, Kress J D, et al. Density-functional calculation of the Hugoniot of shocked liquid deuterium[J]. Phys Rev B, 2000, 61(1): 1-4. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRBMDO000061000001000001000001&idtype=cvips&gifs=Yes
|
[17] |
Desjarlais M P. Density-functional calculations of the liquid deuterium Hugoniot, reshock, and reverberation timing[J]. Phys Rev B, 2003, 68(6): 064204. doi: 10.1103/PhysRevB.68.064204
|
[18] |
Lenosky T J, Kress J D, Collins L A. Molecular-dynamics modeling of the hugoniot of shocked liquid deuterium[J]. Phys Rev B, 1997, 56(9): 5164-5169. doi: 10.1103/PhysRevB.56.5164
|
[19] |
Militzer B, Ceperley D M. Path integral monte carlo calculation of the deuterium hugoniot[J]. Phys Rev Lett, 2000, 85(9): 1890-1893. doi: 10.1103/PhysRevLett.85.1890
|
[20] |
Casula M, Attaccalite C, Sorella S. Correlated geminal wave function for molecules: An efficient resonating valence bond approach[J]. J Chem Phys, 2004, 121(15): 7110-7126. doi: 10.1063/1.1794632
|
[21] |
Holzmann M, Ceperley D M, Pierleoni C, et al. Backflow correlations for the electron gas and metallic hydrogen[J]. Phys Rev E, 2003, 68(4): 046707. doi: 10.1103/PhysRevE.68.046707
|
[22] |
Silvera I F, Goldman V V. The isotropic intermolecular potential for H2 and D2 in the solid and gas phase[J]. J Chem Phys, 1987, 69(9): 4209-4213. doi: 10.1063/1.437103
|
[23] |
Kolos W, Wolniewicz L. Potential-energy curves for the, and C1Πu states of the hydrogen molecule[J]. J Chem Phys, 1965, 43(7): 2429-2441. doi: 10.1063/1.1697142
|
[24] |
Collins L A, Bickham S R, Kress J D, et al. Dynamical and optical properties of warm dense hydrogen[J]. Phys Rev B, 2001, 63(18): 184110. doi: 10.1103/PhysRevB.63.184110
|
[25] |
Nellis W J, Mitchell A C, Thiel V M, et al. Equation of state data for molecular hydrogen and deuterium at shock pressures in the range 2-76 GPa(20-760 kbar)[J]. J Chem Phys, 1983, 79(3): 1480-1486. doi: 10.1063/1.445938
|
[26] |
Knudson M D, Desjarlais M P. Shock compression of quartz to 1.6 TPa: Redefining a pressure standard[J]. Phys Rev Lett, 2009, 130(22): 225501. http://www.ncbi.nlm.nih.gov/pubmed/20366104
|
[27] |
Bonev S A, Militzer B, Galli G. Ab initio simulations of dense liquid deuterium: Comparison with gas gun shock wave experiments[J]. Phys Rev B, 2004, 69(1): 014101. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRBMDO000069000001014101000001&idtype=cvips&gifs=Yes
|
[28] |
Knudson M D, Lemke R W, Hayes D B, et al. Near-absolute Hugoniot measurements in aluminum to 500 GPa using a magnetically accelerated flyer plate technique[J]. J Appl Phys, 2003, 94(7): 4420-4431. doi: 10.1063/1.1604967
|