Theoretical Prediction Model of Critical Energy for Direct Detonation Initiation in H2-O2/Air Mixtures
-
摘要: 基于活塞做功模型,利用H2-O2/Air混合物爆轰临界管径和胞格尺寸,对直接起爆的临界能量进行预测,得出的预测结果和实验值吻合较好,可有效地预测H2-O2/Air混合物的临界起爆能量。基于预测模型得出在相同状态下,H2-Air混合物的临界起爆能量显著大于H2-O2混合物。进一步开展了ZND诱导区长度的研究,计算结果清晰地表明:在相同条件下,H2-Air混合物的诱导区长度明显大于H2-O2混合物,由于临界起爆能量与诱导区的长度通常为三次方的关系,因此导致前者的临界起爆能量大于后者。此结论与活塞做功模型得出的两者临界起爆能量的规律相符。Abstract: Based on the critical tube diameter and detonation cell size data in H2-O2/Air mixtures, the piston work done model was used to predict their critical energies of direct initiation. The good agreement is found by comparing the theoretical predicted critical energies with those measured in the experiment. Thus, the theoretical model is proved to be able to predict the critical energy of H2-O2/Air mixtures within satisfactory. From the theoretical prediction model, it is obviously shown that the critical energy for H2-Air is significantly bigger than H2-O2 mixture when at the same initial conditions. The ZND induction zone length was further investigated to study the large critical energy discrepancy behavior between those mixtures, the results clearly indicated that the induction zone length for H2-Air is much longer than that of H2-O2 mixture at the same initial condition, and it is cube relationship between critical energy and induction zone length, which results in the bigger critical energy of the H2-Air mixture. This result is in agreement with the critical energy predicted from theoretical model.
-
Key words:
- detonation /
- direct initiation /
- critical energy /
- prediction model
-
Sun B G, Zhao J H, Liu F S. Numerical simulation for laminar burning velocity of premixed hydrogen-air mixture [J]. Journal of Combustion Science and Technology, 2010, 16(5): 430-435. (in Chinese) 孙柏刚, 赵建辉, 刘福水. 预混氢气层流燃烧速度的数值模拟 [J]. 燃烧科学与技术, 2010, 16(5): 430-435. Matsui H. Characteristics of hydrogen explosions [J]. China Occupational Safety and Health Management System Certification, 2005, 1(6): 3-9. (in Chinese) Matsui H. 氢气爆炸特性研究 [J]. 中国安全生产科学技术, 2005, 1(6): 3-9. Lee J H S. Dynamic parameters of gaseous detonations [J]. Annual Rev Fluid Mech, 1984, 16: 311-336. Lee J H S. Initiation of gaseous detonation [J]. Annual Rev Phys Chem, 1977, 28: 75-104. Desbordes D. Transmission of overdriven plane detonations: Critical diameter as a function of cell regularity and size [J]. Prog Astron Aeron, 1988, 114: 170-185. Sochet I, Lamy T, Brossard J, et al. Critical tube diameter for detonation transmission and critical initiation energy of spherical detonation [J]. Shock Waves, 1999, 9: 113-123. Kaneshige M, Shepherd J E. Detonation database, FM97-8 [R]. Pasadena, CA: California Institute of Technology, 1997. Mitrofanov V V, Soloukhin R I. The diffraction of multifront detonation waves [J]. Soviet Phys-Dokl, 1965, 9(12): 1055-1058. Edwards D H, Hooper G, Morgan J M. An experimental investigation of the direct initiation of spherical detonations [J]. Acta Astron, 1976, 3(1/2): 117-130. Zhang B, Lee J H S, Bai C H. Critical energy for direct initiation of C2H4-O2 mixture [J]. Explosion and Shock Waves, 2012, 32(2): 113-120. (in Chinese) 张博, Lee J H S, 白春华. CH4-O2混合气体直接起爆的临界能量 [J]. 爆炸与冲击, 2012, 32(2): 113-120. Guirao C M, Knystautas R, Lee J H S, et al. Hydrogen-air detonations [C]//19th Symposium (International) on Combustion. Pittsburgh: The Combustion Institute, 1982: 583-590. Tieszen S R, Sherman M P, Benedick W B, et al. Detonation cell size measurements in hydrogen-air-steam mixtures [J]. Prog Astron Aeron, 1986, 106: 205-219. Denisov Y N, Troshin Y K. Structure of gaseous detonation in tubes [J]. Soviet Phys-Tech Phys, 1960, 5(4): 419-431. Manzhalei V I, Mitrofanov V V, Subbotin VA. Measurement of inhomogeneities of a detonation front in gas mixtures at elevated pressures [J]. Combust, Explo Shock Waves, 1974, 10(1): 89-95. Matsui H, Lee J H. On the measure of the relative detonation hazards of gaseous fuel-oxygen and air mixtures [J]. Symposium (International) on Combustion, 1979, 17(1): 1269-1280. Zitoun R, Desbordes D, Guerraud C, et al. Direct initiation of detonation in cryogenic gaseous H2-O2 mixtures [J]. Shock Waves, 1995, 4(6): 331-337. Zel'dovich Y B, Kogarko S M, Simonov N N. An experimental investigation of spherical detonation in gases [J]. Sov Phys-Tech Phys, 1957, 1: 1689-1713. Kee R J, Rupley F M, Miller J A. Chemkin-II: A Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics, SAND89-8009 [R]. Livermore, CA, USA: Sandia National Labs, 1989. Li J, Zhao Z W, Kazakov A, et al. An updated comprehensive kinetic model of hydrogen combustion [J]. Int J Chem Kinet, 2004, 36: 566-575. Zhang B, Ng H D, Mevel R, et al. Critical energy for direct initiation of spherical detonations in H2/N2O/Ar mixtures [J]. Int J Hydrogen Energ, 2011, 36(9): 5707-5716.
点击查看大图
计量
- 文章访问数: 7374
- HTML全文浏览量: 354
- PDF下载量: 345