含能材料在军事、民用和航天等领域具有广泛应用,极端条件下其物理化学性质会发生显著变化。通过模拟研究预测和优化含能材料性能具有重要意义,包括性能预测、优化设计、安全评估、成本效率控制等。为此,综述了极端条件下含能材料的研究背景、基本性质、模拟研究方法及进展、关键问题以及相关实验研究进展。其中,详细介绍了量子力学、分子动力学、蒙特卡罗和有限元等模拟方法及其研究进展,阐述了高压、高温、激光作用和界面效应等极端条件下模拟研究的关键问题,并列举了含能材料在撞击感度、化学释能规律、3D打印、绿色电合成、爆轰机理和超高含能材料合成等方面的实验研究进展。通过遴选代表性研究,展示了模拟研究在实际问题中的应用和解决方案。同时,介绍了一些最新研究成果,以反映该领域的最新进展和未来趋势。此外,详细讨论了跨学科研究的实现方式以及含能材料在极端条件下的安全性问题,包括可能的风险和预防措施。
为了提高年轮式超高压模具腔体的极限承压能力、增大腔体容积,提出了一种缠绕离散式大腔体超高压模具结构,该模具主要由离散式压缸、支撑环和钢丝缠绕层组成。离散式结构消除了整体式压缸的周向应力,模具无需使用大尺寸硬质合金和支撑环,可有效提高模具的极限承压能力,降低模具制造难度,易于实现模具腔体大型化。对模具关键参数进行计算,得到确定模具结构最佳尺寸的方法。数值模拟结果表明:在相同的工作内压加载下,离散式压缸的应力值更低,压缸内壁的应力环境得到有效改善。对缠绕离散式大腔体超高压模具的极限承压能力进行预测,发现随着离散块数量的增加,模具的承压能力逐渐增强,但是增长速度越来越缓慢。因此,不能通过无限增加离散块数量来增加模具的极限承压能力。分析表明,缠绕离散式大腔体超高压模具的承压能力更高,降低了模具的运行成本。研究结果可为大腔体、高承压能力的超高压装置设计提供新思路、新方法。
为解决北衙金矿在使用预裂爆破技术时整体爆破效果不佳的问题,基于RHT损伤本构模型,利用ANSYS/LS-DYNA数值模拟软件,开展了不同孔距下预裂爆破的数值模拟研究。结果表明:当预裂孔炮孔间距为120 cm时,孔间裂纹存在较为明显的分叉,且裂纹扩展范围较大;当炮孔间距为130 cm时,裂纹向四周扩展的范围减小,且炮孔周围岩石的损伤程度明显降低;当炮孔间距增加至140 cm时,相邻预裂孔连线上的裂纹仅在局部连通,无法实现孔间贯穿。上述结果说明,130 cm的炮孔间距在降低预裂爆破自身对岩体的扰动与实现有效爆破成缝之间达到了平衡。基于数值模拟试验结果开展了现场试验,爆破效果良好。研究结果可为矿山的预裂爆破设计和施工提供参考。
为提高现场混装乳化炸药的耐高温性能,制备了4种不同甲酸铵含量的现场混装乳化炸药基质样品。采用旋转流变仪和同步热分析仪研究了4种样品的流动性、黏弹性、黏温及其热分解性能。结果表明:加入甲酸铵可以提高现场混装乳胶基质的黏度,且随着甲酸铵质量分数的增加,样品的黏度出现先增大后减小的趋势;与未添加甲酸铵的样品相比,加入甲酸铵的样品的弹性模量增大,稳定性增强;当甲酸铵的质量分数不大于9%时,在50 ℃左右的温度下,乳胶基质的黏度均能够满足泵送要求;甲酸铵的加入对乳胶基质的热分解过程没有明显影响;随着甲酸铵质量分数的增加,其外推起始分解温度、活化能、热爆炸临界温度和自加速分解温度均有所增加,现场混装乳胶基质的热稳定性和热安全性得到提升。
为了探究不同喷射压力对受限空间内汽油的燃爆特性的影响,运用20 L球形爆炸测试装置,对不同喷射压力下汽油云雾燃爆的特征参数变化、火焰传播、温度变化进行了测试。结果表明:最佳喷料时间为100 ms,最大燃爆压力和最大燃爆压力上升速率随喷射压力的增加呈线性上升趋势,燃爆持续时间则呈线性下降趋势。喷射压力的变化对燃爆持续时间的影响更为显著,汽油的燃爆效率随着喷射压力的增加而显著提高。基于比色测温方法对火焰温度场进行重构,发现最高平均温度与喷射压力呈线性关系,最高平均温度随喷射压力的增加而升高。通过火焰传播过程中云雾形态和火焰温度的变化情况,就喷射压力对汽油云雾燃爆的影响进行了分析。研究结果可为增压直喷式内燃机的设计以及汽油内燃机燃烧效率和经济性的提升提供理论参考。
利用可视化仿真技术研究弹体侵彻混凝土的毁伤机理和靶板响应是爆炸冲击领域的重要课题。混凝土作为常见的建筑材料,在遭受爆炸冲击或高速弹体侵彻时,其毁伤行为复杂多变。介绍了一种理论研究与可视化技术相结合的可视化仿真方法。基于空腔膨胀理论建立了优化的侵彻计算模型,可以预测弹体侵彻混凝土的侵彻深度特征。利用可视化物理引擎,对弹体运动轨迹、开坑孔径、靶板损伤、碎石飞溅等进行了细致的表征处理和仿真,增强了场景的真实性和可靠性。开发的可视化仿真系统不仅能够从多角度观察弹体侵彻混凝土的过程,而且能够高效、准确地分析和预测弹体侵彻混凝土靶的损伤行为和动力响应,在建筑工程设计和安全评估中具有重要的应用前景,为理解和探索混凝土侵彻机理提供了新的视角。
为研究碳纳米管掺量对混凝土梁损伤演化过程及裂纹扩展规律的影响,制备了质量分数分别为0、0.1%、0.3%、0.5%的碳纳米管混凝土三点弯曲梁试件。采用搭载声发射测试系统的YNS300电液伺服万能试验机开展三点弯曲试验,得到了声发射能量、振铃计数和幅值等声学信息,并基于声发射参数对裂纹类型、损伤演化过程进行分析。结果表明:碳纳米管混凝土三点弯曲梁破坏时产生的声发射能量明显高于素混凝土梁,但随着碳纳米管掺量的增加,其破坏时产生的声发射能量逐渐减小;碳纳米管的掺入可以提高混凝土三点弯曲梁的承载能力,但超过某一界限后,其承载能力随着碳纳米管掺量的增加而降低;碳纳米管的掺入使得混凝土三点弯曲梁第一次声发射幅值突变的时间提前,试样破坏前,振铃计数及累计振铃计数增长缓慢,近似直线,试样断裂瞬间,两者均急剧上升;声发射信号源隶属于拉伸裂纹,碳纳米管混凝土三点弯曲梁断裂属于Ⅰ型断裂,拉伸裂纹和剪切裂纹占比与碳纳米管掺量之间没有明显关系,但声发射平均频率、上升角度信号源数量与碳纳米管掺量之间具有显著的相关性。不同碳纳米管掺量下,混凝土三点弯曲梁试样的损伤演化规律基本保持一致,试验前期损伤曲线基本为水平直线,破坏阶段损伤变量首先处于快速增长阶段,而后呈陡增式增长。
桥丝式电点火头作为常用的点火元件,在有限空间内的发火特性是其传爆精确性和可靠性的体现。通过制备测试样品模拟桥丝式电点火头发火的有限空间,设计桥丝式电点火元件发火参数测试系统,测试了电点火元件发火过程的时间结构、有限空间内气体压力以及发火光强等参数;采用高速相机拍摄电点火元件发火的动态过程,建立了电点火元件有限空间内发火动态过程的物理模型。研究表明:随着点火电压的增大,桥丝的相变时间缩短,等离子体阶段的持续时间增加,随后趋于稳定,电点火头的发火时间在5.6 ms左右波动,发火压力时间及发火光强时间在3.0~5.0 ms范围内有界波动。点火电压达到20 V后,发火特性参数趋于稳定,能够可靠输出均匀的点火能量,用于点燃下一序列装药。在气室有限空间内,电点火元件发火动态过程可分为桥丝升温加热药剂、药剂发火、热流扩散和冲击波反射4个阶段。
爆压间接标定中的不确定度无法消除,不确定度量化能提高模型的可信度和预测能力。然而,爆压间接标定函数具有复杂非线性结构耦合多输入变量等特征,使得爆压不确定度传播研究遇到“维数灾难”等问题。活跃子空间是处理爆压不确定度量化的有效工具。首先,导出系统响应量(system response quantity, SRQ)的梯度协方差矩阵;然后,基于Monte Carlo方法,寻找活跃变量,即SRQ变化最快的方向;接着,将高维输入不确定度转化成一维空间处理,避免了“维数灾难”;最后,建立基于一维活跃变量的四阶多项式响应面模型。结果表明,活跃子空间方法成功刻画了输入不确定度对SRQ的影响,且试验结果落在代理模型预测值的置信区间内,确认了爆压模型的预测能力。研究还发现,爆压的离散程度较大,与孙承纬的结论吻合。此外,建立了一种新的爆压模型。该模型是仿射变换与多项式函数的复合运算,具有形式简洁、光滑性好、鲁棒能力强、运算速度快的特点,且系统输入量是随机变量而非固定值,多项式拟合系数不因输入不确定度的变化而改变。该研究方法具备体系性,可以推广到其他类型的炸药爆压预测。
为了研究球形预制钨破片在圆柱形装药驱动下的飞散规律,开展了预制破片战斗部飞散试验。针对传统梳状靶无法测量破片群速度分布的问题,设计并制作了一种全新的交叉梳状靶,成功测得了多个破片穿靶产生的脉冲信号和着靶位置。采用LS-DYNA模拟研究了圆柱形装药爆炸驱动球形破片的飞散特性。结果表明:数值模拟结果与试验结果吻合良好,交叉梳状测速靶能够较为准确地测量多个破片的飞散速度;增加装药长径比可以削弱装药两端稀疏波对破片速度的影响,但效果随长径比增加而逐渐减弱。
基于密度泛函理论的第一性原理计算方法,研究了NaCl、KCl和KBr晶体在不同压力下相Ⅰ和相Ⅱ构型的几何、电子和力学性质,探讨了这些性质与相变点之间的关系,利用吉布斯自由能法对NaCl、KCl与KBr晶体的相变点进行判断。结果显示,对于NaCl的相Ⅰ结构,在0~30 GPa压力范围内,随着压力的升高,带隙不断增大;在30~50 GPa压力范围内,带隙随着压力的升高而下降,30 GPa正位于NaCl相Ⅰ结构的相变点。这表明根据电子结构判断金属卤化物在压力作用下的相变点具有一定的可行性。由高压下的晶体结构、声子谱以及力学稳定性无法对碱金属卤化物的相变点进行判断。通过吉布斯自由能法计算出了NaCl、KCl和KBr的相变点,分别为22.26、3.47和3.11 GPa。
采用不可压缩理论模型,对FP-2装置上开展的磁驱动固体套筒实验进行了模拟分析。模拟结果表明,无论是二维磁流体力学理论模型,还是其他不可压缩理论模型,回流罩结构磁驱动固体套筒的边界磁感应强度公式中都包含一个小于1的套筒电流系数。对不同套筒厚度、不同套筒半径条件下磁驱动固体套筒实验的电流系数进行了模拟,发现电流系数不仅与套筒内半径有关,还与套筒厚度有关;套筒内半径越大,套筒电流系数越小;套筒厚度越大,套筒电流系数越小。准确掌握磁驱动固体套筒电流系数的变化规律,可使磁流体程序从磁驱动固体套筒实验的后验模拟发展为精确预测,使磁流体力学模型真正具备正确设计和指导磁驱动固体套筒相关实验的理论能力。
为探究电子雷管内的电子控制模块在延期状态下受冲击载荷时的失效机制,采用分离式霍普金森压杆(split Hopkinson pressure bar,SHPB)对电子雷管试件进行了高过载加载测试,得到了整体电子控制模块和分离出钽电容的其余电子控制模块受不同加载压力时的失效情况。结果显示:钽电容在1.495×105
乙醇/甲烷/氢气(C2H5OH/CH4/H2)作为一种新型的替代燃料,研究其爆炸特性对于我国新能源的可持续发展具有重要意义。在不同的当量比(0.8~1.4)、初始压力(0.1、0.2和0.4 MPa)和初始温度(370、400和450 K)下,从实验和化学动力学角度分析了其对关键爆炸特性参数,如峰值爆炸压力、峰值爆炸压力上升速率、爆炸时间以及爆燃指数的影响。结果表明,爆炸特性参数在当量比为1.2~1.3之间时出现极值。峰值爆炸压力与初始压力呈线性正相关,而与初始温度呈线性负相关。增大初始压力,火焰锋面裂纹、胞化程度加深,峰值爆炸压力增大。此外,实验工况下评估的最大爆燃指数为20.83 MPa·m/s,表明预混燃料的燃烧处于相对安全水平。基元反应敏感性分析表明:爆燃反应与H和OH自由基密切相关,而R1、R8、R24、R96是影响爆炸反应强度最重要的4个基元反应。研究成果可为C2H5OH/CH4/H2三元混合燃料在实际燃烧装置中的应用、燃料安全性评估以及爆炸事故预防提供参考。
复杂结构在爆炸驱动作用下的展开是展开型定向战斗部定向过程中的关键问题,对展开过程进行有效控制,有利于战斗部的起爆延时控制和破片利用率提高。针对复杂结构体的展开问题,基于JWL状态方程和第二类拉格朗日方程,从能量守恒出发推导了考虑爆轰产物膨胀过程和对目标命中状态的爆炸驱动展开模型。将驱动展开模型计算结果与文献实验结果进行对比,验证了爆炸驱动展开模型计算结果的准确性。结果表明,基于该模型的理论计算结果与实验结果的一致性较好,能较为精确地预测不同装药量下结构的展开时间;将辅助装药1与辅助装药2的质量比控制在1.5~1.7,结构体展开可达最佳命中姿态,更有利于命中目标。研究成果可充实定向战斗部设计理论,为展开型定向战斗部的设计提供参考。
高熵过渡金属二硼化物因其优异的力学性能及热物理性能受到了人们的广泛关注。然而,过去通过高温固相反应合成的效率较低。为此,通过高温高压固相反应,在5.5 GPa、
设计并组装了一套瞬间放电装置,实现了样品在DS 6×14 MN国产铰链式六面顶大腔体压机下的高压瞬间放电加热。结合大腔体静高压加载技术以及瞬间放电加热技术,利用熔体凝固过程中晶体经历形核和生长2个阶段的特征,判断晶体的熔化情况。对h-BN粉晶进行了高压环境下的瞬间放电加热处理,以研究高压下h-BN的熔化行为。采用扫描电子显微镜对高压条件下经历瞬间放电加热处理的样品进行微观形貌分析,判断h-BN晶体的熔化情况,确定了在3.4和4.3 GPa压力下h-BN的熔点分别为(
中、高熵合金因很好地兼顾了强度和韧性而备受关注,在多种极端工况下具有重要的应用前景。然而,在强冲击载荷等极端条件下,其动态力学行为和损伤失效机制仍不清楚。为此,研究了NbTiZr中熵合金在平板冲击载荷下的层裂损伤,探讨了冲击应力和加载脉宽的影响。通过波剖面分析,获得了冲击应力、加载脉宽和层裂强度信息。研究表明,NbTiZr中熵合金的层裂强度随冲击应力的增大而线性增大,随加载脉冲宽度的增大呈指数减小,介于3.77~4.80 GPa之间。利用光学显微镜、扫描电子显微镜和电子背散射衍射,分析了冲击加载后回收样品的微观组织结构,发现冲击应力和加载脉冲宽度对NbTiZr的层裂损伤形貌有显著影响,层裂损伤形式为准解理断裂,未观察到固-固相变或变形孪晶。
G54钢是我国自主研制的一种新型超高强度钢,具有较高的潜在应用价值。为了研究该材料的动高压性能,为应用推广提供数据支撑,采用火炮作为加载手段,开展了G54钢的飞片对称碰撞实验。实验飞片速度为600~
为进一步揭示不同层理倾角的软硬互层岩在单轴压缩下的声发射特性和裂纹扩展规律,采用类岩石材料制备了软硬互层类岩石试样,基于搭载DS-5型声发射监测系统的RMT-150B型岩石力学试验系统,开展了不同层理倾角(0°、30°、45°、60°和90°)的软硬互层类岩石试样的单轴压缩试验,分析了层理倾角对岩样声发射特性、损伤演化和裂纹扩展的影响。结果表明:试样的声发射活动呈现明显的阶段性特征,且不同层理倾角下其分布特征具有明显差异,声发射特征参数表现出明显的层面效应,声发射累计振铃计数和累计能量随着层理倾角的增大先减小后增大;低频-超高幅信号的突然出现或占比增加可作为软硬互层类岩石试样的破坏前兆,低角度(0°、30°)试样表现为大尺度裂纹稳步扩展破坏,中角度(45°、60°)试样为大尺度裂纹突发失稳扩展破坏,高角度(90°)试样为小尺度裂纹突发失稳扩展破坏,60°层理倾角为试样破坏的最不利角度;试样的损伤累积过程同样具有明显的阶段性特征,在峰值应力前,试样的损伤累积主要集中在高速率损伤阶段,中等角度(45°、60°)的层理面加快了试样的损伤累积过程;不同层理倾角对软硬互层类岩石试样的拉剪裂纹演化的影响差异明显,水平层理面促进了拉剪裂纹的产生,层理倾角的逐渐增大促进了类岩石试样拉剪裂纹的发育,在层理面与岩石基体共同作用下,随着层理倾角的逐渐增大,类岩石试样的剪切裂纹占比先增大后减小,且剪切裂纹数目处于较高水平。研究结果对地下工程围岩结构的稳定性评估具有一定的参考作用。
近场水下爆炸冲击波破坏双壳体潜艇外壳结构后,后续的气泡脉动和射流载荷会对潜艇的内壳体继续造成严重毁伤,因此研究破口附近的气泡脉动和气泡载荷特性具有重要意义。基于受冲击波毁伤后的双壳体潜艇结构,制作预制圆形破口的双层圆柱结构模型,将电火花装置作为气泡发生源,开展了不同爆距参数(爆距与气泡的最大直径之比)和不同破口参数(破口直径与气泡的最大直径之比)条件下气泡与带破口双层圆柱结构的相互作用实验。通过高速摄影机捕捉气泡在双层圆柱结构附近的脉动和射流形成过程,采用粒子图像测速技术对爆炸流场速度进行测试,得到气泡溃灭后产生的水射流速度,同时采用压力传感器测量内层圆柱壳壁面处的压力载荷。实验结果表明:爆距参数决定了内板壁面所受压力的载荷形式、气泡溃灭后是否产生有效射流以及产生的射流速度;当爆距参数在一定范围内时,破口参数影响气泡的脉动以及气泡溃灭后产生的水射流方向。
镁合金和铝合金因具有较高的化学活性,在常规焊接方式下,其表面的氧化物会掺杂到焊接接头内,使得复合板的结合性能下降。为了提高Mg/Al复合板的结合强度,采用真空爆炸焊接法制备了Mg-AZ31B/Al-6061复合板,并与常规空气环境下制备的相同参数复合板进行了对比。通过光学显微镜、扫描电子显微镜、能谱仪以及万能试验机,对结合界面的微观形貌、元素分布和力学性能进行分析。结果表明:由于气体冲击波压力不同,真空环境下复合材料的界面形貌与空气环境下有很大区别;真空环境有效抑制了镁、铝2种金属氧化,在熔化区未检测到金属氧化物。此外,还观察到真空环境下试样的剪切强度和拉伸强度显著增大。因此,真空爆炸焊接对Mg/Al复合板性能的提升起到了重要作用,可以作为一种有效的金属焊接方法。
模块化多孔结构相较于传统一体式结构能够更加灵活地满足装配需求,研究其变形模式和吸能特性,可为多孔结构在工程中的应用提供新思路。选用具有正泊松比效应的正六边形和具有负泊松比效应的内凹形作为模块化多孔结构的填充单元,共设计了8种结构,并进行了准静态压缩实验。实验结果与有限元模拟计算结果吻合良好。研究发现:不同填充方式的结构具有不同的变形模式,其中正六边形填充表现出明显的剪切破坏带,交替填充能较好地保持单元的初始形状;2层填充多孔结构的压缩力峰值均大于3层填充结构,2层结构的比吸能也大于对应的3层填充结构;正六边形填充结构的总吸能、平均压缩力和比吸能在4种填充方式中均最小;内凹形填充结构的总吸能和平均压缩力均最大,且其比吸能保持在稳定且较高的水平。
为探讨炮孔不同割缝宽度对爆生裂纹动态扩展行为的影响,采用数字激光动态焦散线实验系统和分形理论,研究了6种不同割缝宽度时爆生裂纹的扩展规律。结果表明:割缝方向的爆生裂纹长度均大于非割缝方向的爆生裂纹长度;随着割缝宽度的增加,爆生裂纹扩展长度呈现先增大后减小的变化趋势;当割缝宽度增加到0.4 mm时,主裂纹扩展长度最大,割缝宽度继续增加后,主裂纹扩展长度减小。当割缝宽度为0.2 和0.4 mm时,分形维数较其他割缝宽度更大,爆生主裂纹的扩展长度较其他宽度下的扩展长度更长,试件定向断裂效果更优。随着割缝宽度的增加,割缝主裂纹的扩展应力强度因子和速度峰值呈现先快速降低再增加至二次峰值,最后振荡下降的变化趋势。割缝宽度为0.2和0.4 mm时,主裂纹应力强度因子的峰值和扩展速度峰值较其他割缝宽度更大。研究成果可为实际爆破工程中的割缝参数选择提供依据。
基于贝壳多尺度、多层级的砖泥结构,构建仿贝壳Voronoi砖泥结构。通过将3D打印、爆炸实验和数值模拟相结合,探索仿贝壳Voronoi砖泥结构在爆炸载荷下的动力学响应,研究Voronoi单元尺寸和层内软材料厚度对结构变形破坏模式和能量吸收的影响。实验结果表明:在40 g球形乳化炸药作用下,仿贝壳Voronoi砖泥结构的前面板中心处出现了向四周蔓延的径向裂纹,后面板出现小块材料脱落。在此基础上,建立了有限元模型,并验证了其有效性。随着药量的增加,仿贝壳Voronoi砖泥结构主要分为塑性变形、前后面板裂纹、小块材料脱落、结构整体贯穿破坏伴随夹持端剪切破坏4种破坏模式。研究发现:仿贝壳Voronoi砖泥结构中硬材料的水平正应力远大于垂直正应力,层间软材料的剪应变大于层内软材料的剪应变。层间软材料的比吸能远大于硬材料的比吸能,约为硬材料的1.8~2.3倍;随着Voronoi单元尺寸的增大,层内软材料的比吸能增大了45.6%;随着层内软材料厚度增加,层内软材料的比吸能增大了31.1%,允许结构进一步的塑性变形。研究结果为仿生结构设计提供了一定的技术依据。
针对高速战斗部侵彻双层目标时装药的损伤问题,基于内聚力模型开展了PBX装药战斗部侵彻双层靶板的数值模拟研究。采用内聚力模型计算装药损伤的出现与演化,分析了侵彻速度与损伤发生的关系,通过损伤比对侵彻结束后PBX装药的损伤进行了量化,建立了PBX装药细观损伤仿真模型,研究了侵彻双层靶板过程中PBX装药细观损伤机制。结果表明:当弹体垂直侵彻双层靶板时,在压-拉反复作用下,装药尾部形成了垂直于加载方向的贯穿裂纹,且装药的损伤程度随着侵彻速度的增大而增大;在侵彻双层靶板过程中,PBX装药的主要损伤模式是界面脱粘,微裂纹最先出现在颗粒边角处,并且逐渐增多,最终界面微裂纹失稳扩展并汇聚为连续的主裂纹。
为探究单轴压缩下不同裂隙倾角对花岗岩-混凝土组合体试件的强度及能量演化的影响,结合室内试验标定的细观参数,采用二维离散元颗粒流程序(PFC2D)对组合体试件开展了数值模拟研究。结果表明:花岗岩-混凝土的强度和变形特征受裂隙倾角影响,其强度和变形参数随裂隙倾角的增大呈逐渐增大趋势;在单轴压缩过程中,试样内部能量转化为宏观裂纹扩展,最终的破坏模式主要以拉伸失效断裂和剪切失效断裂为主;组合体试件的总能量和耗散能随裂隙倾角的增大而增大,试件破坏时总应变能大于耗散能。基于耗散能的计算,构建了损伤本构方程,当损伤因子为0.8时,试件接近极限状态,此时的能量消耗较大,显著降低了组合体试件的强度。
受孔雀螳螂虾前鄂抗冲击区结构启发,设计并制备了双向波纹夹芯管结构,采用实验和数值模拟相结合的方法研究了其在内爆炸载荷下的动态响应及能量吸收机制。实验获得了结构的外管中点最大挠度和3种典型变形模式:局部塑性变形、塑性大变形以及撕裂破坏。内外管中点最大挠度和结构最终变形模态的数值模拟结果与实验结果吻合较好。通过数值模拟研究了芯层波纹数、内外管壁厚以及炸药质量对外管中点最大挠度和能量吸收特性的影响,结果表明:随着波纹数增大,结构比吸能先增大后减小;增大内管壁厚和减小外管壁厚能有效地提高结构的抗爆性能,当结构内管壁厚为2.5 mm、外管壁厚为1.5 mm时,相比于内管壁厚为1.5 mm、外管壁厚为2.5 mm时,外管中点最大挠度降低了67.6%,质量降低了6.0%;随着TNT当量的增加,内管吸收的能量占比逐渐下降,而芯层和外管吸收的能量占比增加。建立了BP(back propagation)神经网络模型、PSO-BP(particle swarm optimization-back propagation)神经网络模型以及响应面分析模型,分别对结构的比吸能与外管中点最大挠度进行预测,优化了所提出的结构。
蓝宝石因其出色的强度、硬度和光学透明度,常被选为冲击波实验中的观测窗口。深入了解蓝宝石在冲击载荷下的力学和热力学响应机制以及内部损伤原因,对准确评估其性能和稳定性至关重要。利用分子动力学模拟,从原子层面探讨蓝宝石单晶在沿(0001)晶面(C面)冲击作用下的力热响应行为。模拟结果表明,蓝宝石C面冲击作用下激活的滑移系为基于R面{$ 0 \overline 1 12$}的菱形面滑移。冲击速度为1~3 km/s时未出现滑移现象,冲击速度为4 km/s时出现菱形面滑移,冲击速度为5~6 km/s时试样出现以不规则条带为主的非均匀形变。研究表明,蓝宝石滑移系的激活不仅依赖其晶格结构,还需分剪切应力达到临界值。温度场的分析结果表明,局域温升与滑移之间存在对应关系,剪切应变集中区域的温度较高。
基于波阻抗梯度材料的准等熵加载技术是掌握材料动态响应特性的重要技术手段,对于提升材料服役性能至关重要。采用电子束蒸发镀膜技术成功制备出Ti-Pt周期调制梯度材料,通过对周期层内双组分(Ti和Pt单层)厚度的调控,实现了波阻抗的宏观梯度变化。梯度材料实测总厚度与理论设计总厚度的误差仅为1.67%,并且实测平均硬度及弹性模量分别为2.8和99.8 GPa。材料内部层界面清晰,物相分析未发现金属合金相。利用一级轻气炮驱动Ti-Pt周期调制梯度材料加载5 μm厚Al靶,在Al靶内产生冲击-准等熵加载波形。数值模拟结果与实验曲线在上升趋势上吻合良好,5 μm厚Al靶处的粒子速度、应力和应变率曲线的准等熵段存在较大起伏,应变率曲线在正负值间持续振荡,并且振幅较大。应力云图显示周期调制梯度材料在加载过程中会形成多个波系的追赶、叠加、整合。数值模拟结果显示,当靶材厚度为60 μm时,波系完成整合,转变为连续的压缩波。结合数值模拟结果开展了60 μm厚Al靶的轻气炮加载实验,粒子速度曲线和应力曲线的准等熵段转变为平滑的加载波形,应变率曲线准等熵段振幅显著减小,实现了良好的准等熵加载效果。研究结果表明,周期调制梯度材料与靶材厚度需进行匹配设计,研究结果可为新型周期调制梯度结构的应用提供指导。
碳纤维增强复合材料(carbon fiber-reinforced polymer,CFRP)具有优异的抗爆性能,逐渐被应用于舰船结构的抗爆抗冲击设计中。为了探究水下接触爆炸作用下金属/CFRP复合层合板的防护性能,基于任意拉格朗日-欧拉方法,建立了水下接触爆炸对金属/CFRP复合层合板毁伤的流固耦合数值模型,分析了层合板在承受水下爆炸载荷后的变形和吸能特点,比较了不同铺层方式对结构抗爆性能的影响,结果显示,钢/CFRP/钢结构的抗爆性能较优。针对钢/CFRP/钢结构,探究了CFRP的厚度对吸能效果的影响,并进行了厚度优化,得到了较优的厚度比,即1.1∶4.0∶1.1。
在水下爆炸理论与技术的应用研究中,爆炸水池是十分重要的基础试验装置。研究爆炸水池爆破振动效应和减振对于圆柱形爆炸水池使用过程中的振动控制具有指导意义。为研究圆柱形水池内部装药爆炸对周围地面产生的爆破振动并寻求合适的减振材料,选取了建筑碎石、SD型橡胶垫2种减振材料,在小型爆炸水池中进行了单药包在无减振、建筑碎石和SD型橡胶垫减振3种模式下的爆炸试验,对采集到的爆破振动信号进行峰值振速分析、EEMD-HHT(ensemble empirical mode decomposition-Hilbert-Huang transform)处理及小波包分析。结果表明:爆炸水池周围地面的爆破振动包含爆炸冲击波导致的振动、水池跳动导致的触地振动,通过Hilbert瞬时能量分析可以有效识别水池产生的跳动;碎石减振和SD型橡胶减振垫模式下的振速较无减振模式下的振速分别降低53.0%和43.1%,振动能量分别降低64.9%和57.4%;3种减振模式下爆破振动信号的频率主要分布在10~80 Hz区间;无减振、建筑碎石减振、SD型橡胶垫3种减振模式下10~40 Hz频带的能量占比分别为79%、69%、66%,40~80 Hz频带的能量占比分别为11%、29%、31%。碎石和SD型橡胶垫具有吸能、减少低频成分和增加高频成分的效果,可有效降低近处测点的峰值振速。碎石减振模式下振动信号频带的能量分布较SD型橡胶垫模式下的能量分布更加均匀。
钠离子电池因其安全性高、成本低等优势成为电动汽车储能系统的主流研究对象。在电动汽车使用过程中,电池组受到挤压载荷时有可能出现热失控,因此研究钠离子电池碰撞安全与热失控特性对其发展至关重要。为揭示钠离子电池的平板压缩安全特性,针对正极为镍铁锰酸钠(NaNi1/3Fe1/3Mn1/3O2)、负极为硬碳体系的18650型钠离子电池,搭建电池平板压缩安全特性实验平台,研究电池压缩过程中的力-电-热响应,探究钠离子电池的热失控荷电状态范围和钠离子电池的热失控临界速度范围,并分析内短路过程,探寻受损电池的二次使用界限。结果表明:圆柱形钠离子电池荷电状态在80%和90%时发生热失控,热失控临界速度介于14~15 mm/min之间,且电池压缩过程符合标准“4 阶段”过程,压缩受损圆柱形钠离子电池存在二次使用安全界限。